

Article

Acrylonitrile Insertion Reactions of Cationic Palladium Alkyl Complexes

Fan Wu, Stephen R. Foley, Christopher T. Burns, and Richard F. Jordan *J. Am. Chem. Soc.*, **2005**, 127 (6), 1841-1853• DOI: 10.1021/ja044122t • Publication Date (Web): 25 January 2005

Downloaded from http://pubs.acs.org on March **24**, **2009**

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 11 articles that cite this article, as of the time of this article download
- · Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Acrylonitrile Insertion Reactions of Cationic Palladium Alkyl **Complexes**

Fan Wu, Stephen R. Foley, Christopher T. Burns, and Richard F. Jordan*

Contribution from the Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637

Received September 27, 2004; E-mail: rfjordan@uchicago.edu

imidazol-2-yl)₂ (\mathbf{a} , bim), (p-tolyl)₃CCH(N-Me-imidazol-2-yl)₂ (\mathbf{b} , Tbim), CH₂(5-Me-2-pyridyl)₂ (\mathbf{c} , CH₂py'₂), $4,4'-\text{Me}_2-2,2'-\text{bipyridine}$ (d), $4,4'-\text{Bu}_2-2,2'-\text{bipyridine}$ (e), $(2,6-\text{Pr}_2-\text{C}_6\text{H}_3)\text{N}=\text{CMeCMe}=\text{N}(2,6-\text{Pr}_2-\text{C}_6\text{H}_3)$ (f)). $[L_2PdMe(NMe_2Ph)][B(C_6F_5)_4]$ (2a-c) and $[\{L_2PdMe\}_2(\mu-Cl)][B(C_6F_5)_4]$ (2d-f) react with AN to form N-bound adducts $L_2Pd(Me)(NCCH=CH_2)^+$ (3a-f). 3a-e undergo 2,1 insertion to yield $L_2Pd\{CH(CN)Et\}^+$, which form aggregates $[L_2Pd\{CH(CN)Et\}]_n^{n+}$ (n=1-3, 4a-e) in which the Pd units are proposed to be linked by PdCHEtCN- - - Pd bridges. 3f does not insert AN at 23 °C. 4a-e were characterized by NMR, ESI-MS, IR and derivatization to $L_2Pd\{CH(CN)Et\}(PR_3)^+$ (R = Ph (5a-e), Me (6a-c)). 4a,b react with CO to form $L_2Pd\{CH(CN)Et\}(CO)^+$ (7a,b). 7a reacts with CO by slow reversible insertion to yield (bim)Pd $\{C(=O)CH-CO\}$ (CN)Et}(CO)+ (8a). 4a-e do not react with ethylene. (Tbim)PdMe+ coordinates AN more weakly than ethylene, and AN insertion of **3b** is slower than ethylene insertion of (Tbim)Pd(Me)(CH₂=CH₂)+ (**10b**). These results show that most important obstacles to insertion polymerization or copolymerization of AN using L₂PdR⁺ catalysts are the tendency of L₂Pd{CH(CN)CH₂R}⁺ species to aggregate, which competes with monomer coordination, and the low insertion reactivity of L₂Pd{CH(CN)CH₂R}(substrate)⁺ species.

Introduction

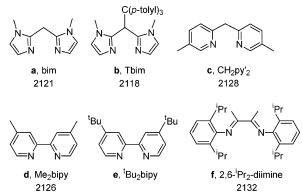
Acrylonitrile (AN) homopolymers and copolymers and their derivatives possess unique properties that are exploited in acrylic fibers, nitrile rubbers, and other applications. 1 Polyacrylonitrile (PAN) and ethylene/AN copolymers are prepared commercially by radical polymerization, and PAN can also be prepared by anionic polymerization. The synthesis of AN polymers by insertion polymerization using metal catalysts is an attractive goal, because, as in conventional olefin polymerization, tuning of the catalyst structure may enable greater control over polymer structures and properties than is possible with radical or anionic polymerization.^{2,3}

A general scheme for the possible insertion polymerization or copolymerization of AN is shown in Scheme 1. Several challenges are immediately apparent. First, AN can coordinate to metals through either the CN group or the C=C unit, or by several bridging modes.⁴⁻⁶ Insertion polymerization catalysts

Scheme 1 L_nM-R polymer copolymer polymer copolymer

normally contain high valent, poor-back-bonding metal centers, for which the N-bound mode will be favored. For example, an N-bound AN ligand is present in the platinum α-diimine complex $(ArN=CHCH=NAr)Pt(Me)(NCCH=CH_2)^+$ (Ar=2-OSi^tPr₃-6-Me-C₆H₃), ^{4a} which is an analogue of the classic $\{(2,6^{-i}Pr_2-C_6H_3)N=CMeCMe=N(2,6^{-i}Pr_2-C_6H_3)\}$ PdMe(L)⁺ catalyst.⁷ The requirement for N/ π isomerization will increase the overall insertion barrier in such cases. N/π -

^{(1) (}a) Acrylonitrile and Acrylonitrile Polymers. In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed.; Wiley & Sons: New York, 1983; Vol. 1, pp 414–456. (b) Kirk-Othmer Encyclopedia of Chemical Technology Home Page. http://www.mrw.interscience.wiley.com/kirk/ (accessed June 2003). (c) Alger, M. Polymer Science Dictionary, 2nd ed.; Chapman Hall: New York, 1997; pp 6-


Boffa, L. S.; Novak, B. M. Chem. Rev. 2000, 100, 1479.
 Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169.
 For representative N-bound AN complexes, see: (a) Albietz, P. J., Jr.; Yang, K.; Lachicotte, R. J.; Eisenberg, R. Organometallics 2000, 19, 3543. (b) Yang, Z.; Ebihara, M.; Kawamura, T. J. Mol. Catal. A: Chemical 2000, 509. (c) Chin, C. K.; Chong, D.; Lee, S.; Park, Y. J. Organometallics, 2000, 19, 4043. (d) Davidson, J. L.; Ritchtzenhein, H.; Thiebaut, B. J. S.; Landskron, K.; Rosair, G. M. J. Organomet. Chem. 1999, 592, 168. (e) Fischer H.; Roth, G.; Reindl, D.; Troll, C. J. Organomet. Chem. 1993, 454, 133.

isomerization was observed for CpFe(CO)₂(AN)⁺.8 Nitriles are known to inhibit ethylene polymerization by α-diimine catalysts.3

Assuming that the C=C π complex can be accessed, AN insertion can occur with either 1,2 or 2,1 regiochemistry to yield $L_nMCH_2CH(CN)R$ or $L_nMCH(CN)CH_2R$ products, respectively. Several examples of 2,1 AN insertion into L_nM-H bonds are known. For example, (Me₂NCS₂)Pd(PEt₃)H reacts with AN at low temperature to yield (Me₂NCS₂)Pd(PEt₃){CH(CN)Me}. ^{9a} Several examples of net 1,2 additions of L_nM-H species to the C=C bond of AN have been reported, which are believed to proceed by radical mechanisms.¹⁰ Examples of net 2,1 AN insertion into Pt-amido and Pt-phosphido bonds have also been reported.¹¹ AN insertions into metal-alkyl bonds have been proposed as key steps in Ru-catalyzed AN dimerization, metalmediated coupling reactions involving AN, and other reactions, but have not been directly observed to date.¹²

Numerous metal complexes have been reported to polymerize AN.¹³ While it is likely that in most of these cases the

- (5) For representative C=C-π-bonded AN complexes see (a) Río, I. D.; Gossage, R. A.; Hannu, M. S.; Lutz, M.; Spek, A. L.; Koten, G. V. Organometallics 1999, 18, 1097. (b) Maekawa, M.; Munakata, M.; Kuroda-Sowa, T.; Hachiya, K. Inorg. Chim. Acta 1994, 227, 137. (c) Felice, V. D.; Albano, V. G.; Castellari, C.; Cucciolito, M. E.; Renzi, A. D. J. Organomet. Chem. 1991, 403, 269. (d) Albano, V. G.; Castellari, C.; Cucciolito, M. E.; Panunzi, A.; Vitagliano, A. Organometallics 1990, 9, 1269. (e) Tolman, C. A.; Seidel, W. C. J. Am. Chem. Soc. 1974, 96, 2774.
- (6) Bryan, S. J.; Huggett, P. G.; Wade, K.; Daniels, J. A.; Jennings, J. R. Coord. Chem. Rev. 1982, 44, 149.
- (a) Brookhart, M.; Leatherman, M. D.; Liu, W.; Williams, B. S. *Polym. Mater. Sci. Eng.* **2004**, *90*, 79. (b) Shultz, L. H.; Tempel, D. J.; Brookhart, M. *J. Am. Chem. Soc.* **2001**, 123, 11539. (c) Gottfried, A. C.; Brookhart, M. Macromolecules 2001, 34, 1140. (d) Tempel, D. J.; Johnson, L. K.; Huff, R. L.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 2000, 122, 6686. (e) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. **1995**, 117, 6414.
- (8) Rosenblum, M.; Turnbull, M. M.; Begum, M. K. J. Organomet. Chem. **1987**, 321, 67,
- (a) Reger, D. L.; Garza, D. G. Organometallics 1993, 12, 554. (b) Herberich, G. E.; Barlage, W.; Linn, K. J. Organomet. Chem. 1991, 414, 193. (c) Deshpande, S. S.; Gopinathan, S.; Gopinathan, C. J. Organomet. Chem. 1989, 378, 103. (d) Gopinathan, S.; Unni, I. R.; Gopinathan, C. Polyhedron 1986, 5, 1921. (e) Otsuka, S.; Nakamura, A. J. Am. Chem. Soc. 1972, 94,
- (10) (a) Anderson, D. J.; Eisenberg, R. Organometallics 1996, 15, 1697. (b) Baddley, W. H.; Fraser, M. S. J. Am. Chem. Soc. 1969, 91, 3661. (c) Lemsink, A. J.; Noltes, J. G. Tetrahedron Lett. 1966, 335
- (11) (a) Seul, J. M.; Park, S. J. Chem. Soc., Dalton Trans. 2002, 6, 1153. (b) Park, S. Bull. Korean Chem. Soc. 2001, 22, 15. (c) Wicht, D. K.; Kovacik, I.; Glueck, D. S.; Liable-Sands, L. M.; Incarvito, C. D.; Rheingold, A. L. Organometallics 1999, 18, 5141. (d) Wicht, D. K.; Kourkine, I. V.; Lew, B. M.; Nthenge, J. M.; Glueck, D. S. J. Am. Chem. Soc. 1997, 119, 5039.
- (e) Cowan, R. L.; Trogler, W. C. J. Am. Chem. Soc. 1989, 111, 4750. (f) Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451.
 (12) (a) Yi, C. S.; Torres-Lubian, J. R.; Liu, N.; Rheingold, A. L.; Guzei, I. A. Organometallics 1998, 17, 1257. (b) Depree, G. J.; Main, L.; Nicholson, B. K. J. Organomet. Chem. 1998, 155, 281. (c) Janecki, T.; Pauson, P. L.; Pietrzykowski, A. J. Organomet. Chem. 1987, 325, 247. (d) Bryndza, H. E.; Calabrese, J. C.; Wreford, S. S. Organometallics 1984, 3, 1603. (e) Healy, K. P.; Pletcher, D. J. Organomet. Chem. 1978, 161, 109. (f) Cooke, M. P., Jr.; Parlman, R. M. J. Am. Chem. Soc. 1977, 99, 5222. (g) Otsuka, S.; Nakamura, A.; Yoshida, T.; Naruto, M.; Ataka, K. J. Am. Chem. Soc. 1973, 95, 3180. (h) Fukuoka, A.; Nagano, T.; Furuta, S.; Yoshizawa, M.; Hirano, M.; Komiya, S. Bull. Chem. Soc. Jpn. 1998, 71, 1409.
- (13) (a) Jenkins, A. D.; Lappert, M. F.; Srivastava, R. C. Polymer Lett. 1968, (a) Jenkins, A. D.; Lappert, M. F.; Srivastava, R. C. Polymer Lett. 1906, 6, 865. (b) Saegusa, T.; Horiguchi, S.; Tsuda, T. Macromolecules 1975, 8, 112. (c) Gandhi, V. G.; Sivaram, S.; Bhardwaj, I. S. J. Macromol. Sci., Chem. 1983, A19, 147. (d) Billingham, N. C.; Lees, P. D. Makromol. Chem. 1993, 194, 1445. (e) Tsuchhara, K.; Suzuki, Y.; Asai, M.; Soga, K. Chem. Lett. 1999, 891. (f) Siemeling, U.; Kölling, L.; Stammler, A.; Stammler, H.-G.; Kaminski E.; Fink, G. Chem. Commun. 2001, 1177. (g) Suh, M. P.; Ob. Y.; Kyuki, C. Organomytallics 1987, 6, 411. (b) Mydellica, D. Oh, Y.; Kwak, C. *Organometallics* **1987**, *6*, 411. (h) Mudalige, D. C.; Rempel, G. L. *J. Macromol. Sci., Chem.* **1997**, *A34*, 361. (i) Arndt, S.; Beckerle, K.; Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. *J. Mol. Catal. A*: Chem. 2002, 190, 215. (j) Yamamoto, A.; Ikeda, S. J. Am. Chem. Soc. 1967, 89, 5989. (k) Ikariya, T.; Yamamoto, A. J. Organomet. Chem. 1974, 72, 145. (1) Miyashita, A.; Yamamoto, T.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1977, 50, 1109. (m) Yamamoto, T.; Yamamoto, A.; Ikeda, S. Bull. Chem. Soc. Jpn. 1972, 45, 1111. (n) Yamamoto, T.; Yamamoto, A.; Ikeda, S. Bull. Chem. Soc. Jpn. 1972, 45, 1104. (o) Yamamoto, A. J. Chem. Soc., Dalton Trans. 1999, 7, 1027.

Figure 1. Ancillary ligands (L₂) used in this work and ν_{CO} values (in cm⁻¹) for the terminal CO ligands in the corresponding L₂Pd{C=O)Me}(CO)⁺

polymerization mechanism is either anionic or radical, few systems have been studied in detail. For example, Cy₃PCuMe and (bipy)₂FeEt₂ each initiate the anionic polymerization of AN. 13j-0 The major initiator in AN polymerization by Cy₃-PCuMe is PCy₃, which is liberated from the Cu complex. ^{14a} A transient iron hydride complex formed by β -H elimination of (bipy)₂FeEt₂ was proposed to initiate AN polymerization by (bipy)₂FeEt₂. ^{14a} Evidence for radical polymerization of AN by (bipy)₂FeEt₂ has also been reported. 14b

To identify and understand the chemical issues that underlie the challenge of achieving metal-mediated AN insertion polymerization, we are investigating the reactions of single-site olefin polymerization catalysts with this substrate. Here we describe studies of the reactions of representative cationic Pd-(II) ethylene dimerization and polymerization catalysts with AN. Parallel studies of the reactions of neutral and anionic Pd(II) alkyl complexes with AN by Piers and co-workers are described in a companion paper. 15

Results

Choice of Probe Complexes. Six representative "L₂PdCH₃+" catalysts, which contain the bidentate nitrogen L₂ ligands a-f in Figure 1, were studied in this work. 16 Cationic "L₂PdMe⁺" species were generated as $[L_2PdMe(NMe_2Ph)][B(C_6F_5)_4]$ (2ac) or $[\{L_2PdMe\}_2(\mu-Cl)][B(C_6F_5)_4]$ (2d-f) complexes as described below. Ligands **a**-**f** were chosen to enable investigation of how the electronic and steric properties of L₂PdMe⁺ species influence their reactivity with AN. The electrophilic character of L_2PdMe^+ species is expected to vary in the order a,b < c,d,e< f, based on the $\nu_{\rm CO}$ values for the terminal CO ligands in the corresponding $L_2Pd\{C(=O)Me\}(CO)^+$ complexes, which are listed in Figure 1.¹⁷ Ligands **b** and **f** are sterically bulky while **a** and $\mathbf{c} - \mathbf{e}$ are not. L₂PdMe(ethylene)⁺ species based on these ligands catalyze the dimerization (a, c-e) or polymerization (b, f) of ethylene.^{7,17} The ethylene insertion rates of L₂PdMe-(ethylene)⁺ species increase with increasing steric crowding and electrophilic character at Pd ($\mathbf{a} < \mathbf{b} < \mathbf{c} \ll \mathbf{f}$).^{7,17}

⁽a) Schaper, F.; Foley, S. R.; Jordan, R. F. J. Am. Chem. Soc. 2004, 126, 2114. (b) Yang, P.; Chan, B. C. K., Baird, M. C. *Organometallics* **2004**, *12*0, 23, 2752.

⁽¹⁵⁾ Groux, L. F.; Weiss, T.; Reddy, D. N.; Chase, P. A.; Piers, W. E.; Ziegler, T.; Parvez, M.; Benet-Buchholz, J. J. Am. Chem. Soc. 2005, 127, 1854.

⁽¹⁶⁾ $L_2 = CH_2(N-Me-imidazol-2-yl)_2$ (**a**, bim), $(p-tolyl)_3CCH(N-Me-imidazol-2-yl)_2$ (16) L₂ = CH₂(V-Me-1midazoti-2yl)₂ (a, nim), (p-tolyl)₃C-H₁(V-Me-1midazoti-2-yl)₂ (b, Tbim), CH₂(5-Me-2-pyridyl)₂ (c, CH₂py'₂), 4, 4'-Me₂-2, 2'-bipyridine (d, Me₂bipy), 4, 4'-Bu₂-2, 2'-bipyridine (e, 'Bu₂bipy), and (2, 6-Pr₂-C₆H₃)N=CMeCMe=N(2, 6-Pr₂-C₆H₃) (f, 2, 6-Pr₂-diimine).
 (17) Burns, C. T.; Jordan, R. F. Abstracts of Papers, 224th ACS National Meeting, Boston, 2002, INOR-322.

Generation of L₂PdMe(NMe₂Ph)⁺ and [{L₂PdMe}₂(μ-Cl)]⁺ Species. The reaction of L₂PdMe₂ (1a-c) with [HNMe₂-Ph][B(C₆F₅)₄] quantitatively generates L₂PdMe(NMe₂Ph)⁺ (2a-c) and methane within 10 min at −78 °C (eq 1). The NMR spectra of 2a-c show the presence of an unsymmetrical L₂ ligand and a NMe₂Ph ligand. Complexes 2a-c are stable at −40 °C in CD₂Cl₂ but decompose to Pd⁰ at 23 °C (significant Pd⁰ observed within 10 min).

The chloride complexes $L_2PdMeCl$ ($1\mathbf{d}-\mathbf{f}$) were used as precursors to L_2PdMe^+ species because they are more stable than the corresponding L_2PdMe_2 compounds. The reaction of $1\mathbf{d}-\mathbf{f}$ with 0.5 equiv of $[Li(Et_2O)_{2.8}][B(C_6F_5)_4]$ yields dinuclear $[\{L_2PdMe\}_2(\mu-Cl)]^+$ complexes $2\mathbf{d}-\mathbf{f}$ quantitatively (eq 2).^{7d,18} Complexes $2\mathbf{d}-\mathbf{f}$ are stable at 23 °C for several hours.

$$\begin{array}{c} \text{Me} \\ \text{L}_2\text{Pd} \\ \text{Cl} \\ \text{1d-f} \\ \\ \text{d, L}_2=\text{Me}_2\text{bipy} \\ \text{e, L}_2=\ ^t\text{Bu}_2\text{bipy} \\ \text{f, L}_2=2,6^{-l}\text{Pr}_2\text{-diimine} \\ \text{anion} = \text{B}(\text{C}_6\text{F}_5)_4^{-l} \\ \end{array} \begin{array}{c} \text{O.5} \\ \text{Li}(\text{Et}_2\text{O})_{2.8} \\ \text{IB}(\text{C}_6\text{F}_5)_4^{-l} \\ \end{array} \begin{array}{c} \text{O.5} \\ \text{IB}(\text{C}_6\text{F}_5)_4^{-l} \\ \end{array} \begin{array}{c} \text{O.5} \\ \text{IB}(\text{C}_6\text{F}_5)_4^{-l} \\ \end{array}$$

Generation of N-Bound L₂Pd(Me)(NCCH=CH₂)⁺ Complexes (3a-f). Addition of excess AN to 2a-c results in quantitative displacement of NMe₂Ph and formation of L₂Pd-(Me)(NCCH=CH₂)⁺ complexes (3a-c, eq 1). 2a and 2c react with AN at -60 °C within 5 min. In contrast, 2b requires a higher temperature (-30 °C) and longer reaction time (30 min) for complete displacement to occur due to the presence of the bulky apical C(p-tolyl)₃ substituent, which retards associative substitution processes. Similarly, AN adducts 3d-f are generated quantitatively (5 min, 23 °C) by reaction of 2d-f with excess AN in the presence of 0.5 equiv $[Li(Et_2O)_{2.8}][B(C_6F_5)_4]$ (eq 2).

The ¹H and ¹³C NMR AN resonances of **3a**-**f** are only slightly shifted from the free AN positions. For example, the ¹H NMR AN resonances for **3a** (-60 °C) appear at δ 6.55 (d, J = 18, 1H, H_{trans}), 6.43 (d, J = 12, 1H, H_{cis}) and 5.93 (dd, J = 18, 1H, H_{trans})

Scheme 2

= 18, 12; 1H, H_{int}), ca. 0.3 ppm downfield from the corresponding free AN resonances. The ¹³C NMR AN resonances of **3a** appear at δ 143.0 (C_{ter}), 119.2 (CN) and 105.7 (C_{int}), within 5 ppm of the corresponding free AN positions. Additionally, the IR $v_{\rm CN}$ values of two representative examples, 3a (2244) cm^{-1}) and 3d (2247 cm^{-1}) are ca. 15 cm^{-1} higher than that for free AN (2230 cm⁻¹). These data are similar to data for known N-bound AN complexes, such as $(C_5Me_5)Ir(\eta^3-CHPhCHCH_2)$ - $(NCC=CH_2)^+$ (¹H NMR: δ 6.56-6.35 (m); ¹³C NMR δ 143.4 (C_{ter}) , 120.4 (CN) and 106.2 (C_{int}) ; v_{CN} 2259 cm⁻¹), which was characterized by X-ray diffraction. 4c,6 In contrast, for C=C π -bound AN complexes, the ¹H and ¹³C NMR AN resonances are normally shifted far upfield, and $v_{\rm CN}$ is decreased, compared to the free AN values.^{5,6} Therefore, it is clear that **3a-f** contain N-bound AN ligands. The presence of AN was confirmed by the ESI mass spectra of 3d and 3f, in which the L₂Pd(Me)-(AN)⁺ ions are the major cations observed.

Acrylonitrile Insertion of $3\mathbf{a} - \mathbf{e}$ and Generation of $[\mathbf{L}_2\mathbf{Pd} + \{\mathbf{CH}(\mathbf{CN})\mathbf{Et}\}]_n^{n+}$ Species $(4\mathbf{a} - \mathbf{e})$. Complexes $3\mathbf{a} - \mathbf{e}$ undergo 2,1 insertion of the AN C=C bond at 23 °C to afford $\mathbf{L}_2\mathbf{Pd} + \{\mathbf{CH}(\mathbf{CN})\mathbf{Et}\}_n^{n+}$ aggregate species $(4\mathbf{a} - \mathbf{e}, \mathbf{Scheme}\ 2)$. ¹H NMR monitoring experiments show that $3\mathbf{a} - \mathbf{e}$ are completely consumed but no free AN is consumed in this reaction. No intermediates in the conversion $3\mathbf{a} - \mathbf{e}$ to $4\mathbf{a} - \mathbf{e}$ were observed by NMR. In contrast, $3\mathbf{f}$ is stable at 23 °C for several days, and there is no evidence for AN insertion in this case under these conditions. The qualitative rates of AN insertion of $3\mathbf{a} - \mathbf{e}$ to yield $4\mathbf{a} - \mathbf{e}$, as assessed by NMR monitoring of the disappearance of the Pd-Me resonance at 23 °C, vary in the order: $3\mathbf{b}$ $(t_{1/2}\ \mathbf{ca}, 6\ \mathrm{min}) > 3\mathbf{a}\ (t_{1/2}\ \mathbf{ca}, 1.5\ \mathrm{h})$, $3\mathbf{c}$, $\mathbf{d}\ (t_{1/2}\ \mathbf{ca}, 4\ \mathrm{h}) > 3\mathbf{f}$ (no reaction).

The NMR spectra of **4a**-**e** are complex and show that several chemically inequivalent [L₂PdCH(CN)Et]⁺ units are present in each case. For example, the ¹H NMR spectrum of **4a** contains three major sets of bim resonances implying the presence of three inequivalent unsymmetrical (bim)Pd environments. This spectrum also contains multiplets at δ 2.49 (1H), 2.22–1.78 (2H), 1.24-1.15 (3H) consistent with the presence of several inequivalent -CH(CN)Et units. The ESI mass spectra of several examples (4a-c) show the presence of $[L_2Pd\{CH(CN)Et\}]_n^{n+}$ ions (n = 1-3). For example, three major cations are observed in the ESI-MS of 4a, with molecular weights and isotope patterns corresponding to (bim)Pd{CH(CN)Et}+, [(bim)Pd{CH- $(CN)Et\}_{2}^{2+}$ and $\{[(bim)Pd\{CH(CN)Et\}]_{3}^{3+}[B(C_{6}F_{5})_{4}^{-}]\}$. While the detailed structures of 4a-e have not been established, it is likely that the Pd units are linked by μ^2 -C,N-PdCHEtCN---Pd bridges. The IR $v_{\rm CN}$ bands for two representative cases, 4a (2246 cm⁻¹) and **4d** (2249 cm⁻¹), appear at slightly higher frequency than those of free nitriles (e.g., CH₃CH(CN)Et, 2238

cm⁻¹).¹⁹ These values are similar to $v_{\rm CN}$ values for the μ^2 -C,N α -cyanoalkyl complexes $[{\rm Pd}_2({\rm C}_6{\rm F}_5)_4\{\mu^2$ -C,N- ${\rm CHXCN}\}_2]^2$ - $({\rm X}={\rm CN},\,2250~{\rm cm}^{-1};\,{\rm X}={\rm CO}_2{\rm Me},\,2240~{\rm cm}^{-1}).^{20}$ The $v_{\rm CN}$ values in such systems reflect the compensating effects of the presence of the metal at ${\rm C}_\alpha$, which will reduce $v_{\rm CN}$, and coordination of the metal at the CN nitrogen, which will increase $v_{\rm CN}.^{21}$ Compounds ${\bf 4a}$ - ${\bf e}$ are stable in ${\rm CD}_2{\rm Cl}_2$ solution at 23 °C for at least 10 days.

Although attempts to isolate ${\bf 4a-e}$ using $B(C_6F_5)_4^-$ as the counterion were unsuccessful, $[(Me_2bipy)Pd\{CH(CN)Et\}]_n^{n+}$ was isolated as the $B\{3,5-(CF_3)_2-C_6H_3\}_4^-$ salt. The reaction of ${\bf 1d}$ with 1 equiv of Na[B $\{3,5-(CF_3)_2-C_6H_3\}_4^-$] and 10 equiv of AN in CH₂Cl₂ affords analytically pure $[(Me_2bipy)Pd\{CH-(CN)Et\}][B\{3,5-(CF_3)_2-C_6H_3\}_4^-]$ (${\bf 4d'}$) as a yellow solid (81%). The NMR spectra of ${\bf 4d'}$ are very similar to those of ${\bf 4d}$ (with the exception of the anion resonances) indicating that the aggregation of the two species is similar. Further support for the formulation of ${\bf 4a-e}$ as 2,1 insertion products is provided by chemical derivatization experiments as discussed below.

Similar 2,1 AN insertion and aggregation by μ^2 -C,N-PdCHEtCN--Pd bridging were observed for neutral and anionic Pd alkyl complexes, and in one case the aggregation mode was confirmed by X-ray diffraction. ¹⁵

Generation of [L₂Pd{CH(CN)Et}(PR₃)][B(C₆F₅)₄] Derivatives. To confirm the presence of a PdCH(CN)Et unit in 4a-e and hence that 2,1 AN insertion occurs as proposed in Scheme 2, the reactions of 4a-e with Lewis bases were explored. Complexes **4a**–**e** do not react with excess AN, CH₃CN or THF at 23 °C in CD₂Cl₂ solution. However, as shown in eq 3, 4a-e react quantitatively with 1 equiv of PPh₃ (5 min, 23 °C) to yield $L_2Pd\{CH(CN)Et\}(PPh_3)^+$ cations 5a-e, which have been characterized by multinuclear NMR and ESI-MS. Complex 5b exists as two diastereomers due to the presence of two stereogenic centers. Complex 5c also exists as two isomers, due to slow inversion of the chelate ring, which likely has a boat conformation similar to those in structurally characterized Pd^{II} complexes containing related bidentate N-donor ligands.²² The ¹H NMR spectra of 5a-e each contain a multiplet for the PdCH(CN)CH2CH3 methine hydrogen, which couples to the two methylene protons and phosphorus, multiplets for the diastereotopic PdCH(CN)CH2CH3 hydrogens, and a triplet for the PdCH(CN)CH₂CH₃ methyl group. The ¹H-¹H COSY spectra of 5a-e show correlations between these resonances that are consistent with the PdCH(CN)CH₂CH₃ structure. The ¹³C{¹H} NMR spectra of 5a-e each contain a doublet ($J_{CP} = 4-7$ Hz) in the range δ 10-16 for PdCH(CN)Et methine carbon. The ³¹P NMR spectra of **5a**-**e** each contain a PPh₃ resonance at ca. δ 35, which is shifted downfield from the free PPh₃ position (δ -5.0). The IR $v_{\rm CN}$ bands for both **5a** and **5d** appear at 2192 cm⁻¹, ca. 56 cm⁻¹ below the values for **4a,d**. These $v_{\rm CN}$ values are similar to those for other complexes containing nonbridging MCR₂CN units, ^{9,11,23} such as (bipy)Pd(CH₂CN)₂ (2194 cm⁻¹), ^{21d} (Me₂NCS₂)Pd(PEt₃){CH(CN)Me} (2182 cm⁻¹), ^{9a} and [*cis*-Ir-(CO)₂(CH₂CN)₂]⁻ (2195 cm⁻¹). ²⁴ The reduction in $v_{\rm CN}$ on going from **4a,d** to **5a,d** is consistent with the change from bridging to terminal coordination of the PdCH(CN)Et unit.

The analogous PMe $_3$ adducts 6a-c are formed in a similar manner (eq 3) and display similar spectroscopic properties.

$$[L_{2}Pd\{CH(CN)Et\}]_{n}^{n+} \xrightarrow{PR_{3}} L_{2}Pd \xrightarrow{CN} PR_{3}$$
4a-e
5a-e: R = Ph
6a-c: R = Me

Attempts to isolate **5** or **6** using $B(C_6F_5)_4^-$ as the counterion were unsuccessful. However, **5d** was isolated as the $B\{3,5-(CF_3)_2-C_6H_3\}_4^-$ salt. The reaction of **4d'** with 1 equiv of PPh₃ in CH_2Cl_2 at 23 °C yields [(Me₂bipy)Pd{CH(CN)Et}(PPh₃)]-[B $\{3,5-(CF_3)_2-C_6H_3\}_4$] (**5d'**) as an analytically pure yellow solid (74%). These results confirm the characterization of **4a**—**e** as 2,1 insertion products.

Generation of [L₂Pd{CH(CN)Et}(CO)][B(C₆F₅)₄] (7a,b). As noted above, $4\mathbf{a}-\mathbf{e}$ do not react with AN at 23 °C. This lack of reactivity arises because AN is not a sufficiently strong Lewis base to break up the PdCHEtCN- - -Pd bridging units in these aggregated cations. Similarly, $4\mathbf{a}-\mathbf{e}$ do not react with ethylene at 23 °C (6 atm, 1 d; up to 25 atm for $4\mathbf{a}$). No evidence for reaction of $4\mathbf{a}$ with ethylene (6 atm) was observed up to 50 °C, at which temperature Pd⁰ formation was observed. To determine if insertions into Pd—CH(CN)R bonds are possible, the reactions of $4\mathbf{a}-\mathbf{e}$ with the potentially more reactive substrate CO were explored.

Exposure of 4a,b to 6 atm of CO at 23 °C results in rapid (5 min) formation of the CO adducts $L_2Pd\{CH(CN)Et\}(CO)^+$ (7a,b, eq 4). In contrast, 4c−e do not react with CO under these conditions. 7b exists as two diastereomers due to the presence of two stereogenic centers. The ¹H, ¹³C, and COSY NMR spectra establish that 7a,b each contain an α -cyano-propyl ligand. The Pd-CO 13 C NMR resonance appears at δ 174 for both 7a and 7b, close to the chemical shifts observed for the analogous acetyl carbonyl complexes (bim)Pd{C(=O)Me}- $(CO)^{+}$ (δ 173) and (Tbim)Pd{C(=O)Me}($CO)^{+}$ (δ 172).¹⁷ The IR $v_{\rm CO}$ value for the terminal CO ligand of **7b** (2132 cm⁻¹) is higher than that of (Tbim)Pd{C(=O)Me} $(CO)^+$ (2118 cm⁻¹), which reflects the electron-withdrawing effect of the α-CN substituent.¹⁷ For comparison, the v_{CO} value for $\{(^n \text{hexyl})\text{CH-}$ (N-Me-imidazol-2-yl)₂}Pd(CHCl₂)(CO) is 2144 cm⁻¹.²⁵ The CO ligand of 7a is labile, and decreasing the CO pressure to 1 atm or below results in the regeneration of 4a. In contrast, 7b is stable under 1 atm of CO for several hours.

$$[L_2Pd\{CH(CN)Et\}]_n^{n+}$$

$$4a,b$$

$$+ CO$$

$$CO$$

$$CO$$

$$CO$$

$$CO$$

$$CO$$

$$7a,b$$

CO Insertion of (bim)Pd{CH(CN)Et}(CO)⁺ (7a). Complex 7a undergoes slow CO insertion (23 °C, 2 d) to yield an

^{(19) (}a) Funabiki, T.; Hosomi, H.; Yoshida, S.; Tarama, K. J. Am. Chem. Soc. 1982, 104, 1560. (b) Odic, Y.; Pereyre, M. J. Organomet. Chem. 1973, 55, 273.

⁽²⁰⁾ Ruiz, J.; Rodríguez, V.; López, G.; Casabó, J.; Molins, E.; Miravitlles, C. Organometallics 1999, 18, 1177.

⁽²¹⁾ For other examples see (a) Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9330. (b) Naota, T.; Tannna, A.; Kamuro, S.; Murahashi, S. J. Am. Chem. Soc. 2002, 124, 6842. (c) Morvillo, A.; Bressan, M. J. Organomet. Chem. 1987, 332, 337. (d) Oehme, G.; Rober, K.; Pracejus, H. J. Organomet. Chem. 1976, 105, 127. (e) Falvello, L. R.; Fernandez, S.; Navarro, R.; Urriolabeitia, E. P. Inorg. Chem. 1997, 36, 1136.

^{(22) (}a) Canty, A. J.; Minchin, N. J.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1992, 45, 423. (b) Newkome, G. R.; Gupta, V. K.; Theriot, K. J.; Ewing, J. C.; Wicelinski, S. P.; Huie, W. R.; Fronczek, F. R.; Watkins, S. F. Acta Crystallogr. 1984, C40, 1352. (c) Newkome, G. R.; Gupta, V. K.; Taylor, H. C. R.; Fronczek, F. R. Organometallics 1984, 3, 1549.

equilibrium mixture of **7a** and (bim)Pd{C(=O)CH(CN)Et)}-(CO)⁺ (**8a**, eq 5). The equilibrium constant for CO insertion, measured over a range of CO pressure (P_{CO}) of 4 to 20 atm, is $K_{eq} = [8a][7a]^{-1}P_{CO}^{-1} = 0.050(2)$ atm⁻¹ at 23 °C. At 6 atm CO pressure, a ca. 1/3 mixture of **8a** and **7a** is formed, whereas at 20 atm of CO, a 1/1 mixture is formed. Complex **7b** does not insert CO under these conditions.

Complex **8a** has been characterized by multinuclear NMR. The Pd{C(=O)CH(CN)Et} acyl 13 C resonance appears at δ 213, close to the position observed for the acyl resonance in (bim)-Pd{C(=O)Me}(CO)⁺ (δ 217). 17 The 13 C Pd{C(=O)CH(CN)-Et} methine resonance appears at δ 56.4, ca. 40 ppm downfield from the corresponding resonances of **5a**, **6a**, and **7a**, as expected due to the proximity of the carbonyl group. 26 The Pd{C(=O)CH(CN)Et} methine 1 H resonance occurs at δ 3.51 (dd), ca. 1.7 ppm downfield from the corresponding resonances of **5a** and **6a**, and 0.7 ppm downfield from the corresponding resonance of **7a**. For comparison, the methine 1 H resonance for CH₃C(=O)CH(CN)Et occurs at δ 3.70. 27 These assignments have been confirmed by experiments with 13 CO. 28

Exposure of **8a** to vacuum results in regeneration of **4a**, confirming that the CO insertion of **7a** (eq 5) and the CO coordination of **4a** (eq 4) are reversible. For comparison, (bim)-Pd(Me)(CO)⁺ inserts CO much more rapidly (<1 min at 23 °C, ca. 1 atm) than **7a** to yield (bim)Pd{C(=O)Me}(CO)⁺ quantitatively and irreversibly. Thus, the α -CN group clearly inhibits but does not prevent the CO insertion.

Generation of [(bim)Pd{CH(CNB(C_6F_5)₃)Et}(CH₂=CH₂)]-[B(C_6F_5)₄] (9a). As noted above, ethylene does not react with 4a-e at 23 °C. One possible approach to promoting the reaction of [L₂Pd{CH(CN)Et}]_nⁿ⁺ species with olefins is to use a Lewis

(24) Porta, F.; Ragaini, F.; Cenini, S. *Organometallics* **1990**, *9*, 929.

Scheme 3

acid (A) to cleave the aggregates to form potentially more reactive monomeric $[L_2Pd\{CH(CN-A)Et\}^+$ species. The reaction of 4a with B(C₆F₅)₃ and 10 equiv of ethylene (0 °C, 20 min) generates $[(bim)Pd\{CH(CNB(C_6F_5)_3)Et\}(CH_2=CH_2)]$ - $[B(C_6F_5)_4]$ (9a) quantitatively (eq 6). The ¹⁹F NMR spectrum of **9a** contains a set of resonances at δ -134.9, -156.9, and -167.0 for the $-\text{CNB}(\text{C}_6\text{F}_5)_3$ unit, which are in the range observed for the nitrile adduct CH₃CN-B(C₆F₅)₃.²⁹ The ¹H and ¹³C NMR spectra of **9a** contain resonances that are characteristic of an α -cyano-propyl group. The ethylene ¹H (δ 5.11) and ¹³C (δ 94.1) resonances of **9a** both appear as broad singlets and are shifted upfield from the free ethylene positions (1 H: δ 5.38; ¹³C: δ 123.0; at -60 °C). Exchange of free and **9a**-coordinated ethylene is slow on the NMR time scale at 0 °C, which contrasts with the fast ethylene exchange observed for (bim)Pd(Me)- $(CH_2=CH_2)^+$ at -60 °C.¹⁷ Ethylene exchange of **9a**, which is expected to occur by an associative mechanism, is probably inhibited by the presence of the sterically bulky borane-capped α-cyano-propyl group. Complex 9a decomposes to Pd⁰ over several hours at 23 °C.

Complex **9a** does not undergo ethylene insertion at 23 °C. In contrast, (bim)Pd(Me)(CH₂=CH₂)⁺ inserts ethylene rapidly above -10 °C.¹⁷ Therefore, the presence of the electron-withdrawing α -CN-B(C₆F₅)₃ substituent clearly inhibits insertion of **9a**.

$$\begin{bmatrix} CN \\ (bim)Pd \end{bmatrix} n^{+} \xrightarrow{B(C_6F_5)_3} CH_2 = CH_2 \\ \hline \begin{pmatrix} CN - B(C_6F_5)_3 \\ CH_2 = CH_2 \\ O C \\ \hline \end{pmatrix} CM - B(C_6F_5)_3 \\ CM - B(C_6F_5)_4 \\ CM - B(C_6F_5)_5 \\ CM - B(C_6F_5)_5 \\ CM - B(C_6F_5)_5 \\ CM - B($$

Comparative Ethylene and AN Coordination and Insertion. The relative binding strength and insertion kinetics of ethylene and AN were compared using the (Tbim)PdMe⁺ system, as shown in Scheme 3. The equilibrium constant for the reaction of **3b** with ethylene to form **10b** and AN, $K_{eq} = [10b][AN]/[3b][ethylene]$, was measured by ¹H NMR between -76 °C and -25 °C. Under these conditions, ethylene/AN exchange (i.e., **3b/10b** exchange) is slow on the NMR chemical shift time scale. At -25 °C, $K_{eq} = 6.3(1)$, and ethylene binding is favored over AN coordination. For example, at this temperature, the reaction of **3b** with 130 equiv of AN and 20 equiv of ethylene yields a ca. 1/1 equilibrium mixture of **3b** and **10b**. The reverse reaction, i.e., addition of excess AN to **10b** also affords an equilibrium mixture of **10b** and **3b**. A van't Hoff

^{(23) (}a) Ittel, S. D.; Tolman, C. A.; English, A. D.; Jesson, J. P. J. Am. Chem. Soc. 1978, 100, 7577. (b) Ragaini, F.; Porta, F.; Fumagalli, A.; Demartin, F. Organometallics 1991, 10, 3785. (c) Ros, R.; Bataillard, R.; Roulet, R. J. Organomet. Chem. 1976, 118, C53. (d) Naota, T.; Tannna, A.; Murahashi, S.-I.; J. Am. Chem. Soc. 2000, 122, 2960.

⁽²⁵⁾ Foley, S. R.; Shen, H.; Qadeer, U. A.; Jordan, R. F. Organometallics 2004, 23, 600.

⁽²⁶⁾ The ¹³C Pd{C(=O)CH(CN)Et} methine chemical shift of 8a (δ 56.4) agrees reasonably well with the predicted value (δ 48.1) for CH₃C(=O)CH(CN)-Et, which is estimated using standard ¹³C NMR chemical shift additivity rules. See Breitmaier, E.; Voelter, W. Carbon-13 NMR, 3rd ed.; VCH Publishers: Weinheim, Germany, 1987; pp 313–325.

Publishers: Weinheim, Germany, 1987; pp 313–325.

(27) Itoh, T.; Fukuda, T.; Fujisawa, T. Bull. Chem. Soc. Jpn. 1989, 62, 3851.

(28) (a) The reaction of 4a with ¹³CO yields an equilibrium mixture of (bim)-Pd{CH(CN)Et}(¹³CO)+ (7a-¹³C₁) and (bim)Pd{¹³C(=O)CH(CN)Et}(¹³CO)+ (8a-¹³C₂). The Pd{¹³C(=O)CH(CN)Et} methine ¹H NMR resonance of 8a-¹³C₂ shows extra coupling not observed for 8a, due to the labeled acyl carbonyl group. In addition, the Pd{¹³C(=O)CH(CN)Et} methine ¹³C NMR resonance of 8a-¹³C₂ is a doublet (δ 56.4, ¹J_{CC} = 25). No ²J_{CC} coupling is observed between the Pd{¹³C(=O)CH(CN)Et} and Pd-¹³CO carbons. (b) An unambiguous simulation of the Pd{¹³C(=O)CH(CN)Et} methine ¹H NMR resonance of 8a-¹³C₂ to acquire ²J_{CH} is not possible because the appearance of the simulated methine resonance is extremely sensitive to the assigned chemical shift values for the diastereotopic CH₂ hydrogens, which cannot be obtained due to overlapping of these resonances with the corresponding resonances of 7a-¹³C₁. This complication reflects the second-order character of the Pd{¹³C(=O)CH(CN)CH₂CH₃} spin system, which results from the small chemical shift difference for the diastereotopic methylene hydrogens. However, if the chemical shifts of the methylene protons are taken as δ 1.92 and 1.91, the Pd{¹³C(=O)CH(CN)Et} methine resonance is defined as ddd (J_{HH} = 13.2, 0.8; ²J_{CH} = 6.6). The ²J_{CH} value determined in this way is consistent with a two-bond C(=O)CH coupling (cf. ²J_{CH} = 5.5 for acetone).

⁽²⁹⁾ Jacobsen, H.; Berke, H.; Döring, T.; Kehr, G.; Erker, G.; Fröhlich, R.; Meyer, O. Organometallics 1999, 18, 1724.

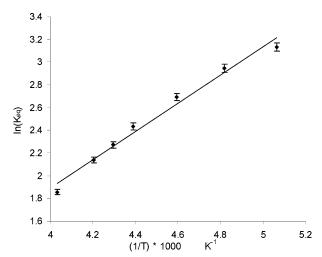


Figure 2. van't Hoff plot for the equilibrium in Scheme 3.

plot of the $K_{\rm eq}$ data (Figure 2) yields $\Delta H^{\circ} = -2.5(1)$ kcal/mol, $\Delta S^{\circ} = -6(1)$ eu for the equilibrium in Scheme 3. Using these thermodynamic parameters, $K_{\rm eq}$ is calculated to equal 4.4(3) at 0 °C.

The reaction of **3b** to produce **4b** is presumed to occur by reversible N/ π -isomerization, followed irreversible migratory insertion and subsequent aggregation, as shown in Scheme 2. The observed first-order rate constant for conversion of **3b** to **4b** measured by the disappearance of the Pd-Me ¹H NMR resonance of **3b**, is $k_{\text{obs,AN}} = 3.75(3) \times 10^{-4} \, \text{s}^{-1}$ at 0 °C. Making the steady-state assumption for the unobserved π -complex intermediate, $k_{\text{obs,AN}} = k_1 k_2 / (k_{-1} + k_2)$ (see Scheme 2).³⁰ For comparison, the rate constant for ethylene insertion of **10b** is $k_{\text{ins,=}} = 11.0(2) \times 10^{-4} \, \text{s}^{-1}$ at 0 °C.¹⁷

These results show that AN coordinates more weakly and, overall, inserts more slowly than ethylene in the (Tbim)PdMe⁺ system. Nevertheless, AN can compete with ethylene for insertion into (Tbim)PdMe⁺. Assuming that AN/ethylene exchange (i.e., **3b/10b** exchange) is fast relative to insertion, the relative rates of formation of (Tbim)Pd{CH(CN)Et}⁺ and (Tbim)PdPr⁺ by reaction with AN and ethylene with (Tbim)-PdMe⁺ are given by eq 7.³¹

$$\frac{\text{rate of AN rxn}}{\text{rate ethylene rxn}} = \frac{(k_{\text{obs,AN}})[\text{AN}]}{K_{\text{eq}}(k_{\text{ins,=}})[\text{ethylene}]}$$
(7)

For equal concentrations of AN and ethylene, this ratio is estimated to be 7/93 at 0 °C, based on the extrapolated $K_{\rm eq}$ value and measured values of $k_{\rm obs,AN}$ and $k_{\rm ins,=}$ at this temperature.

Discussion

The studies described above provide insights to the acrylonitrile (AN) coordination and insertion reactions of L₂PdR⁺ olefin

dimerization and polymerization catalysts, and the properties of the α -CN-alkyl metal species that result from AN insertion in these systems. The L₂PdMe⁺ species $2\mathbf{a}-\mathbf{f}$, which contain a range of bidentate N-donor ligands (L₂) with different steric and electronic properties, coordinate AN to form N-bound L₂-Pd(Me)(AN)⁺ complexes $3\mathbf{a}-\mathbf{f}$. The C=C π -bound isomers were not detected. These observations are consistent with computational studies, which show that for the model system (HN=CHCH=NH)Pd(Et)(AN)⁺, which is an analogue of $3\mathbf{f}$, the N-bound form is ca. 13 kcal/mol more stable than the π -bound isomer.³² The preference for N-coordination reflects the fact that the σ -donation component dominates the Pd-olefin bonding in L₂Pd(Me)(olefin)⁺ species, due to the poor back-bonding ability of the cationic d⁸ metal center, and the C=C bond of AN is a poor donor due to the low HOMO energy.

L₂PdMe(AN)⁺ species **3a**-**e** undergo 2,1 AN insertion to yield L₂Pd{CH(CN)Et}⁺ species. These reactions likely proceed by initial isomerization to the (unobserved) C=C π complexes followed by migratory insertion, and therefore the overall AN insertion rate will be determined by the energetics of the N/ π isomerization and the insertion rate of the π complex. The strength of the Pd-N interaction and hence the stability of the N-bound adducts should be enhanced as the net positive charge on the metal center is increased. The overall insertion rates are slower for the pyridine and diimine AN complexes 3c-f than for the bim and Tbim complexes 3a,b, which is opposite to the trend in insertion rates of the corresponding ethylene complexes. 7,17 IR $\nu_{\rm CO}$ data for the terminal carbonyl ligands in L₂- $Pd\{C=O\}Me\}(CO)^+$ species (Figure 1) show that the metal centers in the pyridine and diimine complexes are electron-poor relative to those in the bim and Tbim complexes. Therefore, the slower AN insertion rates of 3c-f can be ascribed to stronger N-coordination of AN in these species. Steric crowding in 3f may also disfavor the π complex and thereby contribute to the absence of insertion in this case. It is interesting to note in this context that calculated gas-phase barriers for insertion of the model π complexes (HN=CHCH=NH)Pd(R)(AN)⁺ and (HN= CHCH=NH)Pd(R)(ethylene)⁺ differ by only ca. 1–2 kcal/ mol.32,33

The AN insertions of $3\mathbf{a} - \mathbf{e}$ occur with 2,1 regioselectivity; i.e., Michael-type addition is observed. This regioselectivity is consistent with computational results that show 2,1 insertion is favored by ca. 5 kcal/mol for (HN=CHCH=NH)Pd(R)(AN)⁺ model species.^{32,33} The Cp_z coefficient in the AN LUMO is larger at the terminal carbon (C1) than the internal carbon (C2), which favors migration of the alkyl to C1, and the M-CHRCN bond is expected to be stronger than the M-CH₂CHRCN bond that would be formed by 1,2 insertion.

ESI-MS and NMR studies show that $L_2Pd\{CH(CN)Et\}^+$ species derived from AN insertion of 3a-e form robust $[L_2-Pd\{CH(CN)Et\}]_n^{n+}$ aggregates (4a-e). The structures of these aggregates could not be determined, but IR data and literature precedents strongly suggest that the monomer units are linked by PdCHRCN---Pd bridges. These interactions are strong because the PdCHR*CN* group is more electron-rich and hence

⁽³⁰⁾ The N/π-isomerization could occur intramolecularly as shown in Scheme 2 or by an associative mechanism involving free AN. However, the k_{obs}, AN value for 3b is essentially the same in the absence of free AN (i.e., when 3b is generated from 2b using a deficiency of AN) and in the presence of 140 equiv of free AN, so possible associative N/π isomerization does not influence the overall rate of insertion.

⁽³¹⁾ As AN/ethylene exchange occurs by associative ligand substitution, the rate will depend on the concentrations of free ethylene and AN. EXSY studies show that the first-order rate constants for conversion of **3b** to **10b** (1.8 × 10⁻² s⁻¹) and **10b** to **3b** (2.9 × 10⁻³ s⁻¹) at -30 °C with [ethylene] = 0.26 M and [AN] = 1.4 M are much larger than the $k_{\text{obs}, AN}$ and $k_{\text{ins},=}$ values determined at 0 °C. Thus, under typical conditions, AN/ethylene exchange will be fast relative to insertion for the Tbim system.

^{(32) (}a) Philipp, D. M.; Muller, R. P.; Goddard, W. A., III; Storer, J.; McAdon, M.; Mullins, M. J. Am. Chem. Soc. 2002, 124, 10198. (b) Deubel, D. K.; Ziegler, T. Organometallics 2002, 21, 1603.

^{(33) (}a) Deubel, D. K.; Ziegler, T. Organometallics 2002, 21, 4432. (b) von Schenck, H.; Strömberg, S.; Zetterberg, K.; Ludwig, M.; Åkermark, B.; Svensson, M. Organometallics 2001, 20, 2813.

more Lewis basic than a conventional nitrile, due to the presence of the metal at C_{α} . The PdCHRCN- - -Pd bridging is sufficiently strong that neither AN nor ethylene break up the aggregates to form L₂Pd{CH(CN)Et}(monomer)⁺ complexes, and therefore additional insertion reactions leading to polymerization or copolymerization are not observed. In contrast, the binding affinities of acetonitrile and ethylene to (phen)PdMe⁺ are nearly equal,³⁴ and L₂Pd(R)(NCMe)⁺ species are effective catalysts for ethylene polymerization, and ethylene/acrylate and olefin/ CO copolymerizations.7c,35 Complexes 4a-e do react with phosphines to form L₂Pd{CH(CN)Et}(PR₃)⁺ complexes (5a-e and 6a-c), which enabled definitive characterization of the 2,1 insertion regiochemistry. Complex 4a reacts with ethylene in the presence of $B(C_6F_5)_3$ to form (bim)Pd{CH(CNB(C_6F_5)₃)-Et $\{(CH_2=CH_2)^+ (9a), \text{ but this species is resistant to insertion } \}$ due to the poor nucleophilicity and steric bulk of the boranecapped cyanoalkyl group.

The two most electron-rich $[L_2Pd\{CH(CN)Et\}]_n^{n+}$ species among those studied, 4a,b, react with CO to form L₂Pd{CH-(CN)Et $(CO)^+$ complexes **7a,b**, whereas **4c-e** do not. The reactivity of $[L_2Pd\{CH(CN)Et\}]_n^{n+}$ with CO is determined by the lability of PdCHEtCN- - - Pd bridges and the ability of the L₂Pd{CH(CN)Et}⁺ unit to stabilize the coordinated CO by backbonding, both of which are enhanced by the strong donor imidazole ligands of 4a,b. In the presence of excess CO, 7a undergoes reversible CO insertion to form (bim)Pd{C(=O)-CH(CN)Et{ $(CO)^+$ (8a), whereas 7b does not. The CO insertion of 7a is disfavored both kinetically and thermodynamically relative to CO insertion of the corresponding methyl complex (bim)Pd(Me)(CO)⁺. These results are consistent with previous studies of CO insertion into M-R bonds, which have shown that electron-withdrawing substituents on the migrating R group generally inhibit migration and destabilize the insertion product, while electron-releasing substituents have the opposite effects.³⁶ This trend has been ascribed to differences in bond strengths $(M-R^{EWG} > M-R)$ and differences in the basicity/nucleophilicity of the migrating group (R > R^{EWG}). It is also possible that steric crowding inhibits insertion of 7a and especially 7b. Nevertheless, the observation that 7a reversibly inserts CO suggests that insertion reactions of suitably designed L₂M{CH-(CN)R}(olefin) species may also be possible.

Studies of ligand exchange equilibria and insertion kinetics of (Tbim)Pd(Me)(AN)⁺ (**3b**) and (Tbim)Pd(Me)(ethylene)⁺ (10b) show that AN coordinates more weakly and, overall, inserts more slowly than ethylene in the (Tbim)Pd(Me)⁺ system. The slower insertion of 3b vs 10b reflects the requirement for N/π isomerization of **3b**. Nevertheless, the differences in monomer binding and insertion rates are sufficiently small that

(34) Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996, 118, 4746.
(35) (a) Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888. (b) Brookhart, M.; Rix, F. C.; DeSimone, J. M.; Barborak, J. C. J. Am. Chem. Soc. 1992, 114, 5894. (c) Done, M. C.; Ruther, T.; Cavell, K. J.; Kilner, M.; Peacock, E. J.; Braussaud, N.; Skelton, B. W.; White, A. J. Organomet. Chem. 2002, 607, 78.

AN insertion should be competitive with ethylene insertion in this and related systems.

Conclusions

The reactions of acrylonitrile (AN) with representative L₂-PdMe⁺ olefin dimerization and polymerization catalysts that contain bidentate N-donor ligands (L2) have been studied to probe the possibility of polymerizing this substrate by insertion polymerization. L_2PdMe^+ species form N-bound $L_2Pd(Me)$ -(AN)⁺ adducts that undergo 2,1 AN insertion to yield L₂Pd-{CH(CN)Et}⁺ products. These insertions likely proceed via intermediate C=C π complexes, which, however, were not detected. The ability of the N-bound isomers to isomerize to the π complexes is critical for insertion, and highly electrondeficient, sterically crowded L_nMR⁺ species for which the N-bound adduct is strongly favored over the π -complex, such as 3f, are poor candidates for AN insertion. The L₂Pd{CH(CN)-Et}+ insertion products form robust aggregates by PdCHEtCN--- Pd bridging, due to the enhanced Lewis basicity of the α -metalated nitrile group. The $[L_2Pd\{CH(CN)Et\}]_n^{n+}$ aggregate species studied here are not readily cleaved by ethylene or AN, and therefore do not undergo further insertions of these substrates. However, it should be possible to prevent aggregation of this type by steric blocking using suitably designed ligands or by site-isolation of active catalyst species on a support. The bis-imidazole species (bim)Pd{CH(CN)Et}(CO)⁺ (7a) undergoes reversible CO insertion to form (bim)Pd{C(=O)CH(CN)-Et}(CO)⁺ (8a), but this process is disfavored both kinetically and thermodynamically relative to CO insertion of (bim)Pd-(Me)(CO)⁺, due to the electron-withdrawing effect of the α -CN substituent. The low insertion reactivity of α -CN-substituted L_n-MCHRCN species is the key obstacle to insertion polymerization and copolymerization of AN.

Experimental Section

General Procedures. All manipulations were performed under purified N₂ or vacuum using standard Schlenk or high vacuum techniques or in a nitrogen-filled drybox unless otherwise noted. Nitrogen was purified by passage through columns of activated molecular sieves and Q-5 oxygen scavenger. Chlorinated solvents were distilled from CaH₂, and acrylonitrile (AN) was distilled from CaCl₂, and these materials were stored under vacuum prior to use. PMe3 was purchased from Aldrich and dried over 4 Å molecular sieves. PPh3, CO, 13CO and ethylene were purchased from Aldrich and used as received. $[HNMe_2Ph][B(C_6F_5)_4]$, $[Li(Et_2O)_{2.8}][B(C_6F_5)_4]$, $Na[B(3,5-1)_4]$ C₆H₃(CF₃)₂)₄], and B(C₆F₅)₃ were obtained from Boulder Scientific and used as received. Compounds 1a,³⁷ 1b,c,¹⁷ 1d,e and 2d,e,¹⁸ and 1f^{7e} were prepared by literature procedures.

NMR spectra were recorded in sealed tubes on a Bruker AMX-500 spectrometer at ambient temperature unless otherwise indicated. 1H and ¹³C chemical shifts are reported versus Me₄Si and were determined by reference to the residual solvent peaks. ¹⁹F and ³¹P chemical shifts were referenced to external neat CFCl₃ and H₃PO₄, respectively. Coupling constants are reported in Hz. NMR spectra of B(C₆F₅)₄ salts contain anion resonances at the free anion positions.³⁸ NMR spectra of 3a-c and species derived from these species contain resonances for free

 ^{(36) (}a) Axe, F. U.; Marynick, D. S. J. Am. Chem. Soc. 1988, 110, 3728. (b) Cotton, J. D.; Markwell, R. D. J. Organomet. Chem. 1990, 388, 123. (c) Cotton, J. D.; Crisp, G. T.; Daly, V. A. Inorg. Chim. Acta 1981, 47, 165.
 (d) Cross R. L.; Genymil, J. J. Chem. Soc. 2011, 77, 1881, 47, 165. (d) Cross, R. J.; Gemmill, J. J. Chem. Soc., Dalton Trans. 1981, 2317. (e) Cawse, J. N.; Fiato, R. A.; Pruett, R. L. J. Organomet. Chem. 1979, 172, 405. (f) Anderson, G. K.; Cross, R. J. Acc. Chem. Res. 1984, 17, 67. (g) Kuhlmann, E. J.; Alexander, J. J. Coord. Chem. Rev. 1980, 33, 195. (h) Calderazzo, F.; Noack, K. *Coord. Chem. Rev.* **1966**, *1*, 118. (i) Koga, N.; Morokuma, K. *J. Am. Chem. Soc.* **1986**, *108*, 6136. (j) Ros, R.; Renaud, J.; Roulet, R. *J. Organomet. Chem.* **1974**, 77, C4.

⁽³⁷⁾ Byers, P. K.; Canty, A. J. Organometallics 1990, 9, 210.

 ⁽³⁷⁾ Byers, F. K.; Calny, A. J. Organometatics 1990, 9, 210.
 (38) NMR data for free B(C₆F₅)₄ : ¹³C{¹H} NMR (CD₂Cl₂): δ 148.5 (dm, J = 234, C2), 138.6 (dm, J = 246, C4), 136.6 (dm, J = 243, C3), 123.6 (br, C1). ¹°F NMR (CD₂Cl₂): δ −133.2 (br s, 2F, o-F), −163.7 (t, J = 23, 1F, p-F), −167.6 (t, J = 19, 2F, m-F). ¹³C{¹H} NMR (CD₂Cl₂): 60 °C): δ 147.5 (dm, J = 23, C4). √2.2 (dm, J = 23, C4). 147.5 (dm, J = 241, C2), 137.8 (dm, J = 238, C4), 135.8 (dm, J = 249, C3), 123.6 (br, C1). 19 F NMR (CD₂Cl₂, -60 °C): δ -133.7 (br s, 2F, o-F), -163.0 (t, J = 23, 1F, p-F), -167.0 (t, J = 19, 2F, m-F).

NMe₂Ph.³⁹ Samples of CD₂Cl₂ solutions of **2d-f** and species generated in situ from 2d-f contain LiCl. NMR spectra for species generated in the presence of excess AN contain resonances for free AN.40,41

ESI-MS experiments were performed with a HP Series 1100MSD instrument using direct injection via a syringe pump (ca. 10⁻⁶ M solutions). Good agreement between observed and calculated isotope patterns was observed in all cases. In each case, the listed m/z value corresponds to the most intense peak in the isotope pattern. Infrared spectra were recorded on a Nicolet NEXUS 470 FT-IR spectrometer. Unless otherwise noted, IR spectra were recorded for neat samples using the Nicolet Smart Miracle ATR accessory after the evaporation of the solvent.

The following procedure was used to quantity the CO in the carbonylation reactions. A valved NMR tube containing the reaction solution was attached to a vacuum line, the solution was frozen with liquid nitrogen, the tube was evacuated, and the valve was closed. The vacuum line was isolated from the pumping system and charged with CO. The NMR tube valve was opened to allow CO into the tube and then was closed. The amount of CO that was added to the tube was determined from the decrease in CO pressure in the vacuum line.

 $[(bim)PdMe(NMe_2Ph)][B(C_6F_5)_4]$ (2a). An NMR tube was charged with (bim)PdMe₂ (1a, 4.0 mg, 0.013 mmol) and [HNMe₂Ph][B(C₆F₅)₄] (10.0 mg, 0.013 mmol), and CD₂Cl₂ (0.6 mL) was added by vacuum transfer at -78 °C. The tube was vigorously agitated resulting in a pale yellow solution. The tube was maintained at -78 °C for 10 min and then transferred to the NMR probe at −60 °C. NMR spectra showed that **2a** had formed quantitatively. ¹H NMR (CD₂Cl₂, -60 °C): δ 7.85 (d, J = 8, 2H, o-Ph), 7.44 (t, J = 8, 2H, m-Ph), 7.30 (t, J = 7, 1H, p-Ph), 6.89 (s, 1H, imidazole), 6.88 (s, 1H, imidazole), 6.59 (s, 1H, imidazole), 4.98 (s, 1H, imidazole), 4.13 (s, 2H, CH₂), 3.66 (s, 3H, imidazole NMe), 3.58 (s, 3H, imidazole NMe), 2.92 (s, 6H, NMe₂Ph), 0.76 (s, 3H, PdMe). ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, -60 °C): δ 152.9 (Ph C1), 141.8 (imidazole C2), 140.7 (imidazole C2), 129.1 (Ph C2), 127.5 (Ph C4), 126.9 (imidazole C4), 125.6 (imidazole C4), 121.9 (Ph C3), 121.5 (imidazole C5), 121.4 (imidazole C5), 52.9 (NMe₂Ph), 34.3 (imidazole NMe), 33.7 (imidazole NMe), 22.5 (CH₂), 2.1 (PdMe).⁴²

 $[(Tbim)PdMe(NMe_2Ph)][B(C_6F_5)_4]$ (2b). This complex was generated quantitatively from (Tbim)PdMe₂ (1b, 11.0 mg, 0.018 mmol) and $[HNMe_2Ph][B(C_6F_5)_4]$ (14.7 mg, 0.018 mmol) using the procedure for **2a.** ¹H NMR (CD₂Cl₂, -60 °C): δ 7.84 (d, J = 8, 2H, ortho NMe₂Ph), 7.41 (t, J = 8, 2H, meta-NMe₂Ph), 7.28 (t, J = 7, 1H, para-NMe₂Ph), 7.01 (d, J = 7, 6H, tolyl H2), 6.86 (s, 1H, imidazole), 6.80 (s, 1H, imidazole), 6.60 (br s, 6H, tolyl H3), 6.50 (s, 1H, imidazole), 5.57 (s, 1H, CH), 5.24 (s, 1H, imidazole), 3.15 (s, 3H, imidazole NMe), 2.89 (s, 3H, imidazole NMe), 2.84 (s, 3H, NMe₂Ph), 2.54 (s, 3H, NMe₂Ph), 2.30 (s, 9H, tolyl Me), 0.30 (s, 3H, PdMe). ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, −60 °C): δ 152.9 (C1 of NMe₂Ph), 143.1 (imidazole C2), 143.0 (imidazole C2), 137.5 (tolyl C_{ipso}), 137.4 (tolyl C_{ipso}), 131.3 (br s, tolyl C3), 129.2 (C2 of NMe₂Ph), 128.3 (imidazole C4), 128.0 (br s, tolyl

C2), 127.0 (C4 of NMe₂Ph), 125.0 (imidazole C4), 122.3 (imidazole C5), 122.2 (C3 of NMe₂Ph), 121.9 (imidazole C5), 64.4 ((tolyl)₃C), 56.0 (NMe₂Ph), 50.4 (NMe₂Ph), 45.0 (CH), 36.1 (imidazole NMe), 33.7 (imidazole NMe), 20.5 (tolyl Me), 4.5 (PdMe).

 $[(CH_2py'_2)PdMe(NMe_2Ph)][B(C_6F_5)_4]$ (2c). This complex was generated quantitatively from (CH₂py'₂)PdMe₂ (**1c**, 5.6 mg, 0.017 mmol) and $[HNMe_2Ph][B(C_6F_5)_4]$ (13.4 mg, 0.017 mmol) using the procedure for 2a. Inversion of the chelate ring is slow on the NMR time scale at $-60 \,^{\circ}\text{C}$. ¹H NMR (CD₂Cl₂, $-60 \,^{\circ}\text{C}$): δ 8.20 (s, 1H, py' H6), 7.63 (d, J = 8, 2H, o-Ph), 7.56 (d, J = 8, 1H, py' H4), 7.45 (t, J = 8, 2H, m-Ph), 7.39 (d, J = 8, 1H, py' H4), 7.31 (m, 2H, p-Ph and py' H3), 7.22 (d, J = 8, 1H, py' H3), 5.97 (s, 1H, py' H6), 5.08 (d, J = 13.8, 1H, CH₂), 4.22 (d, J = 13.8, 1H, CH₂), 2.95 (s, 3H, N Me_2 Ph), 2.90 (s, 3H, NMe₂Ph), 2.27 (s, 3H, py' Me), 1.86 (s, 3H, py' Me), 0.91 (s, 3H, PdMe). ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, -60 °C): δ 153.7 (py' C2), 152.5 (Ph C1), 151.8 (py' C2), 151.3 (py' C6), 149.4 (py' C6), 139.7 (py' C4), 139.2 (py' C4), 134.2 (py' C5), 133.1 (py' C5), 129.2 (Ph C2), 126.9 (Ph C4), 124.2 (py' C3), 124.0 (py' C3), 121.6 (Ph C3), 54.7 (NMe₂Ph), 49.7 (NMe₂Ph), 46.5 (CH₂), 17.8 (py' Me), 17.7 (py' Me), 5.4 (PdMe).

 $[{(2,6-iPr_2-diimine)PdMe}_2(\mu-Cl)][B(C_6F_5)_4]$ (2f). An NMR tube was charged with (2,6-iPr₂-diimine)PdMeCl (**1f**, 12.4 mg, 0.029 mmol) and [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (26.3 mg, 0.029 mmol), and CD₂Cl₂ (0.6 mL) was added by vacuum transfer at −196 °C. The tube was warmed to 23 °C resulting in slurry of a white solid in a an orange supernatant. After 10 min, NMR spectra showed that **2f** had formed quantitatively. ¹H NMR (CD₂Cl₂): δ 7.34 (t, J = 8, 2H, Ar H4), 7.26 (d, J = 7, 4H, Ar H3), 7.17 (t, J = 8, 2H, Ar H4), 7.09 (d, J = 8, 4H, Ar H3), 2.89 (septet, J = 6, 4H, CHMe₂), 2.75 (septet, J = 6, 4H, CHMe₂), 2.05 (s, 6H, N=CMe), 2.00 (s, 6H, N=CMe), 1.22 (d, J = 7, 12H, CHMe₂), $1.12 \text{ (d, } J=7,\ 12\text{H, CH} Me_2),\ 1.07 \text{ (d, } J=7,\ 12\text{H, CH} Me_2),\ and\ 1.00$ $(d, J = 7, 12H, CHMe_2), 0.41 (s, 6H, PdMe).$

[(bim)PdMe(NCCH=CH₂)][B(C_6F_5)₄] (3a). An NMR tube containing a solution of $[(bim)PdMe(NMe_2Ph)][B(C_6F_5)_4]$ (2a, 0.013 mmol) in CD₂Cl₂ (0.6 mL) was cooled to -196 °C and acrylonitrile (0.195 mmol) was added by vacuum transfer. The tube was warmed to -78 °C and vigorously agitated resulting in a pale yellow solution. The tube was maintained at -78 °C for 10 min and then transferred to the NMR probe at -60 °C. A ¹H NMR spectrum showed that [(bim)-PdMe(NCCH=CH₂)][B(C₆F₅)₄] (**3a**) had formed quantitatively. Separate sharp ¹H NMR resonances for free and coordinated AN were observed at -60 and 23 °C. 1 H NMR (CD₂Cl₂, -60 °C): δ 6.99 (d, J= 1, 1H, imidazole), 6.97 (d, J = 1, 1H, imidazole), 6.92 (d, J = 1, 1H, imidazole), 6.86 (d, J = 1, 1H, imidazole), 6.55 (d, J = 18, 1H, H_{trans} of coordinated AN), 6.43 (d, J=12, 1H, H_{cis} of coordinated AN), 5.93 (dd, J = 18, 12, 1H, H_{int} of coordinated AN), 4.08 (s, 2H, CH₂), 3.71 (s, 3H, NMe), 3.68 (s, 3H, NMe), 0.75 (s, 3H, PdMe). ¹³C-{1H} NMR (CD₂Cl₂, -60 °C): δ 143.0 (C_{ter} of coordinated AN), 140.1 (imidazole C2), 139.0 (imidazole C2), 126.1 (imidazole C4), 125.6 (imidazole C4), 122.1 (imidazole C5), 121.8 (imidazole C5), 119.2 (CN of coordinated AN), 105.7 (Cint of coordinated AN), 34.6 (NMe), 33.7 (NMe), 22.7 (CH₂), -2.7 (PdMe). The ¹³C NMR assignments for the coordinated AN were confirmed by a DEPT-135 experiment. IR (neat): $v_{\rm CN} = 2244 \text{ cm}^{-1}$.

 $[(Tbim)PdMe(NCCH=CH_2)][B(C_6F_5)_4]$ (3b). A solution of [(Tbim)- $PdMe(NMe_2Ph)][B(C_6F_5)_4]$ (**2b**, 0.018 mmol) in CD_2Cl_2 (0.6 mL) was generated in an NMR tube, and AN (0.162 mmol) was added by vacuum transfer at -196 °C. The tube was maintained at -30 °C for 30 min to achieve complete displacement of NMe₂Ph by AN. A ¹H NMR spectrum was obtained at -60 °C and showed that 3b had formed quantitatively. Separate sharp resonances for free and coordinated AN were observed at -60 and 0 °C. ¹H NMR (CD₂Cl₂, -60 °C): δ 6.99 (d, J = 8, 6H, tolyl H2), 6.83 (d, J = 1, 1H, imidazole), 6.82 (d, J = 11, 1H, imidazole), 6.81 (d, J = 1, 1H, imidazole), 6.77 (d, J = 1, 1H, imidazole), 6.51 (d, J = 18, 1H, H_{trans} of coordinated AN), 6.50 (br d, J=8, 6H, tolyl H3), 6.44 (d, J=12, 1H, H_{cis} of coordinated AN),

^{(39) (}a) NMR data for free NMe₂Ph: 1 H NMR (CD₂Cl₂): δ 7.20 (m, 2H, o-Ph), NMR (CD₂Cl₂): δ 151.1 (C1), 129.3 (C2), 116.6 (C4), 112.8 (C3), 40.7 (Me). ¹H NMR (CD₂Cl₂): δ 151.1 (C1), 129.3 (C2), 116.6 (C4), 112.8 (C3), 40.7 (Me). ¹H NMR (CD₂Cl₂, -60 °C): δ 7.18 (m, 2H, o-Ph), 6.67 (m, 2H, m-Ph), 6.63 (t, J = 7, 1H, p-Ph), 2.88 (s, 6H, Me). ¹³C(H) NMR (CD₂Cl₂) (CD₂) -60 °C): δ 150.2 (C1), 128.7 (C2), 115.8 (C4), 111.9 (C3), 40.3 (Me). (b) If excess [HNMe₂Ph][B(C_6F_5)₄] is used in the generation of 3ac, the excess HNMe₂Ph⁺ undergoes fast H⁺ exchange with NMe₂Ph and a single set of NMe₂Ph/HNMe₂Ph⁺ resonances at the weighted average of the chemical shifts of these species is observed.

⁽⁴⁰⁾ NMR data for free AN: ¹H NMR (CD₂Cl₂, 23 °C): δ 6.21 (d, J = 18, 1H, H_{trans}), 6.07 (d, J = 12, 1H, H_{cis}), 5.67 (dd, J = 18, 12.0, 1H, H_{int}). $\{^{1}H\}$ NMR (CD₂Cl₂): δ 138.0 (C_{ter}), 117.3 (CN), 108.2 (C_{int}). ^{1}H NMR (CD₂Cl₂): δ 138.0 (C_{ter}), 117.3 (CN), 108.2 (C_{int}). ^{1}H NMR (CD₂Cl₂, -60 °C): δ 6.24 (d, J = 18, 1H, H_{trans}), 6.09 (d, J = 12, 1H, H_{cis}), 5.69 (dd, J = 18, 12.0, 1H, H_{int}). $^{13}C\{^{1}H\}$ NMR (CD₂Cl₂, -60 °C): δ 138.1 (C_{ter}), 117.3 (CN), 107.2 (C_{int}). (41) ^{13}C NMR assignments for AN from Schumann, H.; Speis, M.; Boston, (41) ^{13}C NMR assignments for AN from Schumann, H.; Speis, M.; Boston, (42) ^{13}C NMR assignments for AN from Schumann, H.; Speis, M.; Boston, (43) ^{13}C NMR assignments for AN from Schumann, H.; Speis, M.; Boston, (44) ^{13}C NMR assignments for AN from Schumann, H.; Speis, M.; Boston, (45) ^{13}C NMR ^{13}C

W. P.; Smits, J. M. M.; Beurskens, P. T. J. Organomet. Chem. 1991, 403,

⁽⁴²⁾ Assignments of the imidazole C4 and C5 resonances are based on data in Katritzky, A. R.; Pozharskii, A. F. *Handbook of Heterocyclic Chemistry*, 2nd ed.; Pergamon Publisher: New York, 2000; pp 108–112.

5.90 (dd, J=18, 12, 1H, H_{int} of coordinated AN), 5.65 (s, 1H, CH), 3.15 (s, 3H, NMe), 3.05 (s, 3H, NMe), 2.27 (s, 9H, tolyl Me), 0.33 (s, 3H, PdMe). 13 C{ 1 H} NMR (CD $_{^{2}}$ Cl $_{^{2}}$, -60 °C): δ 143.4 (imidazole C2), 142.5 (C_{ter} of coordinated AN), 141.2 (imidazole C2), 137.6 (tolyl C $_{ipso}$), 137.3 (tolyl C $_{ipso}$), 131.4 (tolyl C3), 127.8 (tolyl C2),126.6 (imidazole C4), 125.7 (imidazole C4), 123.0 (imidazole C5), 121.9 (imidazole C5), 118.0 (CN of coordinated AN), 105.7 (C $_{int}$ of coordinated AN), 65.1 ((tolyl) $_{^{3}}$ C), 44.6 (CH), 35.3 (NMe), 34.5 (NMe), 20.5 (tolyl Me), -4.0 (PdMe).

 $[(CH_2py'_2)PdMe(NCCH=CH_2)][B(C_6F_5)_4]$ (3c). This complex was generated quantitatively in CD₂Cl₂ solution from [(CH₂py'₂)PdMe(NMe₂-Ph)][B(C_6F_5)₄] (2c, 0.017 mmol) and AN (0.527 mmol) using the procedure for 3a. The ¹H NMR spectrum contains separate sharp resonances for free and coordinated AN at -60 °C and separate but broad resonances for free and coordinated AN at 23 °C. ¹H NMR (CD₂-Cl₂, -60 °C): δ 8.22 (s, 1H, py' H6), 8.17 (s, 1H, py' H6), 7.66 (d, J = 8, 1H, py' H4), 7.63 (d, J = 8, 1H, py' H4), 7.40 (d, J = 8, 1H, py' H3), 7.38 (d, J = 8, 1H, py' H3), 6.55 (d, J = 18, 1H, H_{trans} of coordinated AN), 6.45 (d, J = 12, 1H, H_{cis} of coordinated AN), 5.94 (dd, J = 18, 12, 1H, H_{int} of coordinated AN), 4.72 (d, J = 14.2, 1H, CH_2), 4.20 (d, J = 14.2, 1H, CH_2), 2.30 (s, 3H, py' Me), 2.29 (s, 3H, py' Me), 0.88 (s, 3H, PdMe). ${}^{13}C{}^{1}H}$ NMR (CD₂Cl₂, -60 °C): δ 153.2 (py' C2), 151.9 (py' C6), 150.7 (py' C2), 149.6 (py' C6), 143.7 (Cter of coordinated AN), 140.6 (py' C4), 140.2 (py' C4), 134.8 (py' C5), 134.3 (py' C5), 125.1 (py' C3), 124.6 (py' C3), 119.7 (CN of coordinated AN), 105.8 (Cint of coordinated AN), 45.8 (CH2), 18.0 (py' Me), 17.9 (py' Me), 0.9 (PdMe).

 $\hbox{\tt [(Me_2bipy)PdMe(NCCH=CH_2)][B(C_6F_5)_4] (3d). A solution of [\{-1,2\},1] (3d).}$ $(Me_2bipy)PdMe_{2}(\mu-Cl)][B(C_6F_5)_4]$ (2d, 0.0075 mmol) and 0.5 equiv [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (0.0075 mmol) in CD₂Cl₂ (0.6 mL) was generated in an NMR tube, and AN (0.45 mmol) was added by vacuum transfer at -196 °C. The tube was warmed to 23 °C, resulting in immediate formation of a slurry of a white solid in a pale yellow supernatant. ¹H NMR spectra showed that **3d** had formed in >95% yield. The ¹H NMR spectrum contains separate sharp resonances for free and coordinated AN at −60 °C and separate but broad resonances for free and coordinated AN at 23 °C. ¹H NMR (CD₂Cl₂, -60 °C): δ 8.29 (d, J = 7, 1H, bipy H6), 8.28 (d, J = 6, 1H, bipy H6), 7.96 (s, 1H, bipy H3), 7.94 (s, 1H, bipy H3), 7.41 (d, J = 6, 1H, bipy H5), 7.40 (d, J = 7, 1H, bipy H5), 6.66 (d, J = 18, H_{trans} of coordinated AN), 6.52 (d, J = 12, H_{cis} of coordinated AN), 6.03 (dd, J = 18, 12, H_{int} of coordinated AN), 2.51 (s, 3H, bipy Me), 2.49 (s, 3H, bipy Me), 0.94 (s, 3H, PdMe). ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, -60 °C): δ 156.3 (bipy C2), 153.1 (bipy C4), 152.5 (bipy C4), 151.8 (bipy C2), 147.9 (bipy C6), 147.4 (bipy, C6), 143.8 (Cter of coordinated AN), 127.8 (bipy), 127.4 (bipy), 123.8 (bipy), 122.9 (bipy), 120.4 (CN of coordinated AN), 105.5 (C_{int} of coordinated AN), 21.4 (bipy Me), 21.3 (bipy Me), 2.8 (PdMe). ESI-MS: $[(Me_2bipy)PdMe(NCCH=CH_2)]^+$ calcd. m/z 358.1, found 358.0. IR (neat): $v_{\rm CN} = 2247 \; {\rm cm}^{-1}$.

[(${}^{\mathbf{B}\mathbf{u}_2\mathbf{bipy}}$)**PdMe**(NCCH=CH₂)][B(C₆F₅)₄] (3e). This complex was generated quantitatively in CD₂Cl₂ (0.6 mL) from **2e** (0.014 mmol) in the presence of [Li(Et₂O)_{2.8}][B(C₆F₅)₄] (0.014 mmol) and AN (0.39 mmol) using the procedure for **3d**. The 1 H NMR spectrum contains separate but broad resonances for free and coordinated AN at 23 °C. 1 H NMR (CD₂Cl₂): δ 8.43 (d, J = 6, 1H, bipy H6), 8.35 (d, J = 6, 1H, bipy H6), 8.12 (d, J = 2, 1H, bipy H3), 8.11 (d, J = 2, 1H, bipy H3), 7.61 (dd, J = 6, 2, 1H, bipy H5), 7.60 (dd, J = 6, 2, 1H, bipy H5), 6.66 (br d, J = 18, 1H, H_{trans} coordinated AN), 6.53 (d, J = 12, 1H, H_{cis} of coordinated AN), 1.43 (s, 9H, CMe₃), 1.42 (s, 9H, CMe₃), 1.06 (s, 3H, PdMe); the H_{int} resonance for coordinated AN was not observed due to exchange broadening and/or interference from the free AN resonances. 13 C(1 H) NMR (CD₂Cl₂): δ 165.7 (bipy C2), 165.3 (bipy C2), 157.1 (bipy C4), 152.6 (bipy C4), 148.5 (bipy C6), 147.8 (bipy, C6), 124.4 (bipy), 124.0 (bipy), 120.1 (bipy), 119.1 (bipy), 35.6

(CMe₃), 35.6 (CMe₃), 29.8 (CMe₃), 29.7 (CMe₃), 2.9 (PdMe); resonances for coordinated AN were not observed due to exchange broadening.

 $[(2,6-P_2-diimine)Pd(Me)(NCCH=CH_2)][B(C_6F_5)_4]$ (3f). This complex was generated quantitatively in CD₂Cl₂ (0.6 mL) from 2f (0.014 mmol) in the presence of $[Li(Et_2O)_{2.8}][B(C_6F_5)_4]$ (0.014 mmol) and AN (0.18 mmol) using the procedure for 3d. The NMR spectra contain separate sharp resonances for free and coordinated AN at 23 °C. ¹H NMR (CD₂Cl₂): δ 7.34 (m, 6H, Ar), 6.19 (d, J = 12, 1H, H_{cis} of coordinated AN), 5.81 (d, J = 18, 1H, H_{trans} of coordinated AN), 5.44 (dd, J = 18, 12, 1H, H_{int} of coordinated AN), 2.95 (septet, J = 7, 2H, $CHMe_2$), 2.89 (septet, J = 7, 2H, $CHMe_2$), 2.24 (s, 3H, N=CMe), 2.23 (s, 3H, N=CMe), 1.37 (d, J = 7, 6H, CHMe₂), 1.34 (d, J = 7, 6H, $CHMe_2$), 1.24 (d, J = 7, 6H, $CHMe_2$), 1.20 (d, J = 7, 6H, $CHMe_2$), 0.55 (s, 3H, PdMe). ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂): δ 180.3 (N=C), 172.7 (N=C), 144.3 (Cter of coordinated AN), 140.7 (Ar C1), 140.6 (Ar C1), 138.6 (Ar C2), 138.0 (Ar C2), 129.3 (Ar C4), 128.6 (Ar C4), 124.9 (Ar C3), 124.6 (Ar C3), 120.5 (CN of coordinated AN), 104.5 (Cint of coordinated AN), 29.5 (CHMe2), 29.3 (CHMe2), 23.8 (CHMe2), 23.7 (CH Me_2), 23.4 (CH Me_2), 23.0 (CH Me_2), 21.8 (N=CMe), 20.1 (N= CMe), 7.4 (PdMe). ESI-MS: $[(2,6^{-i}Pr_2\text{-diimine})PdMe(NCCH=CH_2)]^+$ calcd. m/z 578.2, found 578.2.

 $[(bim)Pd\{CH(CN)CH_2CH_3\}]_n^{n+}$ (B(C₆F₅)₄ salt, 4a). An NMR tube containing a solution of [(bim)PdMe(NCCH=CH₂)][B(C₆F₅)₄] (**3a**, 0.013 mmol) and AN (0.182 mmol) in CD₂Cl₂ (0.6 mL) was maintained at 23 °C and monitored periodically by ¹H NMR. The NMR signals of 3a disappeared after 10 h. The volatiles were removed under vacuum to yield a pale yellow solid. The solid was dissolved in CD₂Cl₂ (0.6 mL). NMR and ESI-MS analyses showed that [(bim)Pd{CH(CN)-CH₂CH₃}]_nⁿ⁺ (**4a**) had formed quantitatively. ¹H NMR (CD₂Cl₂) Major resonances: δ 7.10 (d, J = 1, 1H, imidazole), 7.05 (d, J = 1, 1H, imidazole), 7.03 (d, J = 1, 1H, imidazole), 7.02 (d, J = 1, 1H, imidazole), 6.99 (d, J = 1, 1H, imidazole), 6.93 (d, J = 1, 1H, imidazole), 6.91 (d, J = 1, 1H, imidazole), 6.87 (d, J = 1, 1H, imidazole), 6.86 (d, J = 1, 1H, imidazole), 6.83 (br s, 2H, imidazole), 6.82 (d, J = 1, 1H, imidazole), 4.14 (s, 2H, CH₂), 4.12 (s, 2H, CH₂), 4.09 (s, 2H, CH₂), 3.78 (s, 3H, NMe), 3.76 (s, 3H, NMe), 3.75 (s, 3H, NMe), 3.74 (s, 3H, NMe), 3.69 (s, 3H, NMe), 3.68 (s, 3H, NMe), 2.49 (br m, 3H, PdCH(CN)), 2.22 (m, 1H, PdCH(CN)CH₂), 2.13 (m, 1H, PdCH(CN)CH₂), 2.05 (m, 2H, PdCH(CN)CH₂), 1.90 (m, 1H, PdCH- $(CN)CH_2$, 1.78 (m, 1H, PdCH(CN)CH₂), 1.25-1.10 (m, 9H, PdCH(CN)CH₂CH₃). Major cations observed in ESI-MS: (bim)Pd- $\{CH(CN)CH_2CH_3\}^+$ calcd. m/z 350.1, found 350.1; $\{(bim)Pd\{CH(CN)-(bim)Pd\}\}^+$ CH_2CH_3]₂²⁺ calcd. m/z 350.1, found 350.1; {[(bim)Pd{CH(CN)CH₂- CH_3]₃³⁺[B(C₆F₅)₄]⁻} calcd. m/z 865.5, found 865.2. IR (neat): v_{CN} =

 $[(Tbim)Pd\{CH(CN)CH_2CH_3\}]_n^{n+}(B(C_6F_5)_4^- \text{ salt, 4b})$. This species was generated quantitatively from 3b (0.018 mmol) and AN (0.144 mmol) in 40 min at 23 °C using the procedure for 4a. The observed first-order rate constant for conversion of 3b to 4b, determined from the disappearance of the PdMe ¹H NMR resonance, is $k_{\text{obs}}(23 \, ^{\circ}\text{C}) =$ $2.06(4) \times 10^{-3} \text{ s}^{-1}$ at 23 °C ([AN] = 2.6 M, 70 equiv excess vs **3b**), $k_{\rm obs}(0~{\rm ^{\circ}C}) = 3.75(3) \times 10^{-4}~{\rm s^{-1}}$ at 0 °C ([AN] = 0.82 M, 20 equiv excess vs **3b**), $k_{\text{obs}}(0 \, ^{\circ}\text{C}) = 4.03(5) \times 10^{-4} \, \text{s}^{-1}$ at $0 \, ^{\circ}\text{C}$ ([AN] = 1.6 M, 140 equiv excess vs **3b**), and $k_{obs}(0 \, ^{\circ}\text{C}) = 4.5(2) \times 10^{-4} \, \text{s}^{-1}$ at $0 \, ^{\circ}\text{C}$ (no free AN; 3b generated from 2b and 0.7 equiv AN). ¹H NMR (CD₂-Cl₂) Major resonances: δ 7.14–7.10 (m, 6H, tolyl H2), 7.00–6.76 (m, 4H, imidazole H), 6.63-6.46 (m, 6H, tolyl H3), 5.90-5.72 (m, 1H, CH), 3.57-3.00 (m, 6H, imidazole NMe), 2.40-2.20 (m, 9H, tolyl Me), 2.17-1.70 (m, 1H, PdCH(CN)), 1.53-0.81 (m, 5H, PdCH(CN)- CH_2 and $PdCH(CN)CH_2CH_3$). Key cations observed in ESI-MS: (Tbim)Pd{CH(CN)CH₂CH₃}⁺ calcd. *m/z* 634.2, found 634.1; {[(Tbim)- $Pd\{CH(CN)CH_2CH_3\}_{2^{2^+}}-(p-tolyl)_3C^+\}$ calcd. m/z 983.3, found 983.1.

[(CH₂py'₂)Pd{CH(CN)CH₂CH₃}]_nⁿ⁺ (B(C₆F₅)₄⁻ salt, 4c). This species was generated quantitatively from 3c (0.017 mmol) and AN (0.510 mmol) in 2 d at 23 °C using the procedure for 4a. ¹H NMR

(CD₂Cl₂) Major resonances: δ 8.45–7.30 (m, 6H, py'), 4.90–4.60 (m, 1H, CH₂), 4.50–4.20 (m, 1H, CH₂), 2.50–2.20 (m, 6H, py' Me), 2.20–2.05 (m, 1H, PdCH(CN)), 2.00–1.40 (m, 2H, PdCH(CN)CH₂), 1.40–0.90 (m, 3H, PdCH(CN)CH₂CH₃). Major cations observed in ESI–MS: (CH₂py'₂)Pd{CH(CN)CH₂CH₃}+ calcd. m/z 372.1, found 371.9; [(CH₂py'₂)Pd{CH(CN)CH₂CH₃}]₂²⁺ calcd. m/z 372.1, found 371.9; {[(CH₂py'₂)Pd{CH(CN)CH₂CH₃}]₃³⁺[B(C₆F₅)₄]⁻} calcd. m/z 897.6, found 897.8.

[(Me₂bipy)Pd{CH(CN)CH₂CH₃}]_nⁿ⁺ (B(C₆F₅)₄⁻ salt, 4d). This species was generated quantitatively from 3d (0.015 mmol) and AN (0.430 mmol) in 2 d at 23 °C using the procedure for 4a. ¹H NMR (CD₂Cl₂) Major resonances: δ 8.46–7.90 (m, 4H, bipy), 7.56–7.34 (m, 2H, bipy), 2.76–2.47 (m, 7H, PdCH(CN) and bipy Me), 2.17–1.64 (m, 2H, PdCH(CN)CH₂), 1.44–1.11 (m, 3H, PdCH(CN)CH₂CH₃). Major cation observed in ESI–MS: (Me₂bipy)Pd{CH(CN)CH₂CH₃}+ calcd. m/z 358.1, found 358.0. IR (neat): v_{CN} = 2249 cm⁻¹.

[(Me₂bipy)Pd{CH(CN)CH₂CH₃}] $_n^{n+}$ (B(3,5-C₆H₃(CF₃)₂) $_4^-$ salt, 4d'). A flask was charged with (Me₂bipy)PdMeCl (1d, 100 mg, 0.29 mmol) and Na[B(3,5-C₆H₃(CF₃)₂) $_4$] (260 mg, 0.29 mmol), and CH₂Cl₂ (40 mL) was added at -78 °C by vacuum transfer. The pale yellow slurry was vigorously stirred for 5 min at 23 °C. The flask was cooled to -196 °C and AN (0.2 mL, 3.0 mmol) was added by vacuum transfer. The flask was warmed to 23 °C and the mixture was stirred for 2 d to yield a slurry of a white solid in a yellow supernatant. The mixture was filtered through diatomaceous earth and the yellow filtrate was dried under vacuum to afford a yellow solid (290 mg, 81%). Anal. Calcd for C₄₈H₃₀BF₂₄N₃Pd: C, 47.18; H, 2.47; N, 3.44. Found: C, 47.35; H, 2.65; N, 3.38. The NMR data for 4d' are very similar to the data for 4d, with the exception of the anion resonances.⁴³

[('Bu₂bipy)Pd{CH(CN)CH₂CH₃}]_nⁿ⁺ (B(C₆F₅)₄⁻ salt, 4e). This species was generated quantitatively from 3e (0.028 mmol) and AN (0.36 mmol) after 38 h at 23 °C using the procedure for 4a. ¹H NMR (CD₂Cl₂) Major resonances: δ 8.50–7.96 (m, 4H, bipy), 7.73–7.56 (m, 2H, bipy), 2.75–2.52 (m, 1H, PdCH(CN)), 2.22–1.64 (m, 2H, PdCH(CN)CH₂), 1.50–1.11 (m, 21H, CMe₃ and PdCH(CN)CH₂CH₃). Major cation observed in ESI–MS: ('Bu₂bipy)Pd{CH(CN)CH₂CH₃}+calcd. m/z 442.1, found 442.0.

 $[(bim)Pd\{CH(CN)CH_2CH_3\}(PPh_3)][B(C_6F_5)_4]$ (5a). Solid PPh₃ (3.3 mg, 0.013 mmol) was added to an NMR tube containing solid [(bim)- $Pd\{CH(CN)CH_2CH_3\}\}_n^{n+}$ (B(C₆F₅)₄ salt, **4a**, 0.013 mmol). The tube was evacuated and CD2Cl2 (0.6 mL) was added by vacuum transfer at −78 °C. The tube was vigorously agitated to yield an off-white solution and was then warmed to 23 °C. After 5 min, NMR spectra showed that (bim)Pd{CH(CN)CH₂CH₃}(PPh₃)⁺ (**5a**) had formed in 90% yield. ¹H NMR (CD₂Cl₂): δ 7.68 (m, 7H, o-Ph and imidazole), 7.57 (m, 3H, p-Ph), 7.48 (m, 6H, m-Ph), 7.02 (m, 1H, imidazole), 6.40 (d, J = 2, 1H, imidazole), 5.71 (d, J = 2, 1H, imidazole), 4.26 (d, J = 17, 1H, CH_2), 4.22 (d, J = 17, 1H, CH_2), 3.78 (s, 3H, NMe), 3.62 (s, 3H, NMe), 1.72 (ddd, $J_{HH} = 12.9$, 8.5; $J_{HP} = 6.9$, 1H, PdCH(CN)CH₂), 1.30 (m, 2H, PdCH(CN)C H_2), 0.67 (t, J = 7, 3H, PdCH(CN)C H_2 C H_3). ¹³C- ${}^{1}H$ NMR (CD₂Cl₂): δ 141.6 (imidazole C2), 141.0 (imidazole C2), 134.6 (d, J = 11, o-Ph), 132.4 (d, J = 3, p-Ph), 129.6 (d, J = 10, m-Ph), 128.2 (d, J = 52, Ph C_{ipso}), 128.0 (imidazole C4), 127.3 (imidazole C4), 123.8 (CN), 122.6 (d, J = 2, imidazole C5), 122.0 (imidazole C5), 34.6 (NMe), 34.3 (NMe), 25.5 (PdCH(CN)CH₂), 23.2 (CH₂), 15.2 (PdCH(CN)CH₂CH₃), 13.2 (d, J = 4, PdCH(CN)CH₂). ³¹P-{¹H} NMR (CD₂Cl₂): δ 35.1 (s, PPh₃). Key ¹H-¹H COSY correlations δ/δ : 1.72 (PdCH(CN)CH₂)/1.30 (PdCH(CN)CH₂); 1.30 (PdCH(CN)- CH_2)/0.67 (PdCH(CN)CH₂CH₃). ESI-MS: (bim)Pd{CH(CN)CH₂- CH_3 {(PPh₃)⁺ calcd. m/z 612.1, found 612.0. $B(C_6F_5)_4$ calcd. m/z 679.0, found 678.7. IR (neat): $v_{\rm CN} = 2192 \text{ cm}^{-1}$.

[(Tbim)Pd{CH(CN)CH₂CH₃}(PPh₃)][B(C_6F_5)₄] (5b). This compound was generated in 90% yield from 4b (0.018 mmol) and PPh₃ (6.7 mg, 0.025 mmol) using the procedure for 5a. 5b exists as two diastereomers. The diastereomer ratio was 3/1 after 5 min and reached a constant value of 1/1 after 24 h at 23 °C. NMR data for major diastereomer: ¹H NMR (CD₂Cl₂): δ 7.60 (m, 6H, PPh₃), 7.46 (m, 4H, PPh₃ and imidazole), 7.35 (m, 6H, PPh₃), 7.12 (d, J = 8, 6H, tolyl H2), 6.94 (s, 1H, imidazole), 6.83 (d, J = 8, 6H, tolyl H3), 6.28 (d, J= 1, 1H, imidazole), 5.97 (s, 1H, imidazole), 5.35 (s, 1H, CH), 3.25 (s, 3H, NMe), 2.68 (s, 3H, NMe), 2.37 (s, 9H, tolyl Me), 1.70 (m, 1H, $PdCH(CN)CH_2$), 1.20 (m, 2H, $PdCH(CN)CH_2$), 0.79 (t, J = 8, 3H, PdCH(CN)CH₂CH₃). 13 C{ 1 H} NMR (CD₂Cl₂): δ 144.9 (imidazole C2), 144.2 (imidazole C2), 139.3 (tolyl C_{ipso}), 138.6 (tolyl C_{ipso}), 134.8 (d, J = 11, o-Ph), 132.4 (tolyl C3), 132.3 (d, J = 4, p-Ph), 129.7 (d, J = 411, m-Ph), 129.4 (imidazole C), 129.1 (tolyl C2), 128.2 (imidazole C), 127.7 (d, J = 27, PPh₃ C_{ipso}), 125.9 (CN), 123.5 (d, J = 3, imidazole C), 121.6 (imidazole C), 66.0 ((tolyl)₃C), 45.6 (CH), 36.8 (NMe), 33.7 (NMe), 25.6 (br s, PdCH(CN)CH₂), 21.0 (tolyl Me), 15.3 (PdCH(CN)- CH_2CH_3), 13.5 (br s, PdCH(CN)CH₂). ³¹P{¹H} NMR (CD₂Cl₂): δ 34.0 (s, PPh₃). Key ${}^{1}H-{}^{1}H$ COSY correlations δ/δ : 1.70 (PdCH(CN)CH₂)/ 1.20 (PdCH(CN)CH₂); 1.20 (PdCH(CN)CH₂)/0.79 (PdCH(CN)CH₂CH₃). Key ${}^{1}\text{H}$ - ${}^{13}\text{C}$ HMOC correlations δ ${}^{1}\text{H}/\delta$ ${}^{13}\text{C}$: 1.70 (PdCH(CN))/13.5 (PdCH(CN)); 1.20 (PdCH(CN)CH₂)/25.6 (PdCH(CN)CH₂); 0.79 (PdCH-(CN)CH₂CH₃)/15.3 (PdCH(CN)CH₂CH₃). NMR data for minor diastereomer: ¹H NMR (CD₂Cl₂): δ 7.80 (s, 1H, imidazole), 7.56 (m, 6H, PPh₃), 7.51 (m, 3H, PPh₃), 7.29 (m, 6H, PPh₃), 7.05 (d, J = 8, 6H, tolyl H2), 6.92 (s, 1H, imidazole), 6.64 (d, J = 8, 6H, tolyl H3), 6.39 (d, J = 1.4, 1H, imidazole), 5.89 (s, 1H, imidazole), 5.73 (s, 1H, CH),3.17 (s, 3H, NMe), 3.00 (s, 3H, NMe), 2.31 (s, 9H, tolyl Me), 1.70 (m, 1H, $PdCH(CN)CH_2$), 1.60 (m, 2H, $PdCH(CN)CH_2$), 0.73 (t, J = 8, 3H, PdCH(CN)CH₂CH₃). 13 C{ 1 H} NMR (CD₂Cl₂): δ 144.6 (imidazole C2), 144.4 (imidazole C2), 139.7 (tolyl C_{ipso}), 138.4 (tolyl C_{ipso}), 134.8 (d, J = 11, o-Ph), 132.2 (d, J = 4, p-Ph), 132.0 (tolyl C3), 129.6 (d, J = 11, o-Ph), 132.2 (d, J = 4, p-Ph), 132.0 (tolyl C3), 129.6 (d, J = 11, o-Ph), 132.2 (d, J = 4, p-Ph), 132.0 (tolyl C3), 129.6 (d, J = 4, p-Ph), 120.0 (d, J =J = 11, m-Ph), 129.2 (imidazole C), 129.0 (tolyl C2), 128.4 (imidazole C), 128.1 (d, J = 40, PPh₃ C_{ipso}), 125.8 (CN), 123.4 (d, J = 3, imidazole C), 122.0 (imidazole C), 65.8 ((tolyl)₃C), 46.1 (CH), 36.2 (NMe), 34.9 (NMe), 25.8 (PdCH(CN)CH2), 20.9 (tolyl Me), 15.0 (PdCH(CN)- CH_2CH_3), 11.9 (d, J = 7, $PdCH(CN)CH_2$). ${}^{31}P\{{}^{1}H\}$ NMR (CD_2Cl_2): δ 33.4 (s, PPh₃). Key ¹H $^{-1}$ H COSY correlations δ/δ : 1.70 (PdCH(CN)-CH₂)/1.60 (PdCH(CN)CH₂); 1.60 (PdCH(CN)CH₂)/0.73 (PdCH(CN)-CH₂CH₃). Key ${}^{1}\text{H}-{}^{13}\text{C}$ HMQC correlations δ ${}^{1}\text{H}/\delta$ ${}^{13}\text{C}$: 1.70 (PdCH-(CN))/11.9 (PdCH(CN)); 1.60 (PdCH(CN)CH₂)/25.8 (PdCH(CN)CH₂); 0.73 (PdCH(CN)CH₂CH₃)/15.0 (PdCH(CN)CH₂CH₃). ESI-MS: (Tbim)- $Pd\{CH(CN)CH_2CH_3\}(PPh_3)^+ \text{ calcd. } m/z \text{ 896.2, found 896.2. } B(C_6F_5)_4^$ calcd. m/z 679.0, found 678.7.

 $[(CH_2py'_2)Pd\{CH(CN)CH_2CH_3\}(PPh_3)][B(C_6F_5)_4]$ (5c). This compound was generated quantitatively from 4c (0.016 mmol) and PPh₃ (4.2 mg, 0.016 mmol) using the procedure for **5a**. **5c** exists as two diastereomers. The diastereomer ratio was 5/1 after 5 min and did not change after 24 h at 23 °C. NMR data for major diastereomer: ¹H NMR (CD₂Cl₂): δ 9.12 (s, 1H, py' H6), 7.75 (d, $J_{HP} = 8$, 1H, py' H6), 7.61 (m, 8H, o-Ph and py' H4), 7.48 (m, 6H, m-Ph), 7.35 (m, 5H, p-Ph and py' H3), 5.00 (d, J = 14, 1H, CH₂), 4.37 (d, J = 14, 1H, CH₂), 2.42 (s, 3H, py' Me), 1.81 (ddd, $J_{HH} = 12.1$, 10.7; $J_{HP} = 4.6$, 1H, PdCH(CN)CH₂), 1.74 (s, 3H, py' Me), 1.33 (m, 1H, PdCH(CN)CH₂), 1.02 (m, 1H, PdCH(CN)C H_2), 0.65 (t, J = 7, 3H, PdCH(CN)C H_2 C H_3). ¹³C{¹H} NMR (CD₂Cl₂): δ 151.8 (py' C2), 151.7 (d, J = 2, py' C6), 151.6 (py' C2), 149.7 (py' C6), 141.1 (py' C4), 140.1 (py' C4), 135.1 (d, J = 2, py' C5), 134.4 (py' C5), 133.9 (d, J = 11, o-Ph), 132.1 (d, J = 11, o-Ph), 132.1 (d, J = 11, o-Ph), 132.1 (d, J = 11, J =J = 3, p-Ph), 129.3 (d, J = 11, m-Ph), 126.8 (d, J = 53, Ph C_{ipso}), 125.6 (CN), 125.1 (d, J = 2, py' C3), 124.3 (py' C3), 45.8 (CH₂), 25.9 (PdCH(CN)CH₂), 17.9 (py' Me), 17.7 (py' Me), 14.6 (PdCH(CN)- CH_2CH_3), 12.1 (d, J = 5, $PdCH(CN)CH_2$). ${}^{31}P\{{}^{1}H\}$ NMR (CD_2Cl_2): δ 34.0 (s, PPh₃). Key ¹H-¹H COSY correlations δ/δ : 1.81 (PdCH(CN)-CH₂)/1.33 (PdCH(CN)CH₂); 1.81 (PdCH(CN)CH₂)/1.02 (PdCH(CN)-CH₂); 1.33 (PdCH(CN)CH₂)/1.02 (PdCH(CN)CH₂); 1.33 (PdCH(CN)-

⁽⁴³⁾ NMR spectra of B{3,5-C₆H₃(CF₃)₂}₄⁻ salts contain resonances at the free anion positions. ¹H NMR (CD₂Cl₂): δ 7.72 (s, 8H, H2), 7.55 (s, 4H, H4). ¹³C{¹H} NMR (CD₂Cl₂): δ 162.1 (q, J_{CB} = 234, C1), 135.1 (C2), 129.2 (q, J_{CF} = 32, C3), 125.0 (q, J_{CF} = 273, CF₃), 117.8 (m, C4). ¹⁹F NMR (CD₂Cl₂): δ -62.8 (s). ¹¹B NMR (CD₂Cl₂): δ -6.7 (s).

CH₂)/0.65 (PdCH(CN)CH₂CH₃); 1.02 (PdCH(CN)CH₂)/0.65 (PdCH(CN)CH₂CH₃). NMR data for minor diastereomer: ¹H NMR (CD₂Cl₂): δ 8.51 (s, 1H, py' H6), 7.66–7.21 (m, 20H, PPh₃ and py' H), 5.19 (d, J = 13, 1H, CH₂), 4.44 (d, J = 13, 1H, CH₂), 2.39 (s, 3H, py' Me), 1.81 (m, 1H, PdCH(CN)CH₂), 1.74 (s, 3H, py' Me), 1.02 (m, 2H, PdCH(CN)CH₂), 0.55 (t, J = 7, 3H, PdCH(CN)CH₂CH₃). ¹³C{¹H} NMR (CD₂Cl₂): δ 151.5 (py' C6), 150.3 (py' C6), 141.0 (py' C4), 140.0 (py' C4), 133.8 (d, J = 11, o-Ph), 132.1 (d, J = 3, p-Ph), 129.3 (d, J = 11, m-Ph), 126.6 (d, J = 53, Ph C_{ipso}), 125.4 (CN), 124.8 (d, J = 2, py' C3), 124.3 (py' C3), 46.4 (CH₂), 22.9 (PdCH(CN)CH₂), 17.9 (py' Me), 17.7 (py' Me), 14.5 (PdCH(CN)CH₂CH₃), 10.3 (d, J = 5, PdCH-(CN)CH₂). The py' C2 and C5 resonances were not observed. ³¹P{¹H} NMR (CD₂Cl₂): δ 34.2 (s, PPh₃). ESI-MS: (CH₂py'₂)Pd{CH(CN)CH₂-CH₃}(PPh₃)⁺ calcd. m/z 634.2, found 633.9. B(C₆F₅)₄ calcd. m/z 679.0, found 678.7.

 $[(Me_2bipy)Pd\{CH(CN)CH_2CH_3\}(PPh_3)][B(C_6F_5)_4]$ (5d). This compound was generated in 85% yield in 4 h at 23 °C from 4d (0.015 mmol) and PPh₃ (3.8 mg, 0.015 mmol) using the procedure for **5a**. ¹H NMR (CD₂Cl₂): δ 8.99 (br, 1H, bipy H6), 8.04 (s, 1H, bipy H3), 7.95 (s, 1H, bipy H3), 7.80 (m, 6H, o-Ph), 7.62 (m, 4H, p-Ph and bipy H5), 7.52 (m, 6H, m-Ph), 7.26 (d, J = 6, 1H, bipy H6), 6.75 (d, J = 6, 1H, bipy H5), 2.61 (s, 3H, bipy Me), 2.39 (s, 3H, bipy Me), 1.99 (ddd, J_{HH} = 12.5, 6.3; J_{HP} = 10.2, 1H, PdCH(CN)CH₂), 1.64 (m, 1H, PdCH- $(CN)CH_2$), 1.40 (m, 1H, PdCH(CN)CH₂), 0.74 (t, J = 7, 3H, PdCH-(CN)CH₂CH₃). 13 C{ 1 H} NMR (CD₂Cl₂): δ 155.9 (bipy C2), 155.4 (bipy C2), 154.6 (bipy C4), 153.8 (bipy C4), 151.0 (bipy C6), 149.8 (bipy, C6), 135.1 (d, J = 11, o-Ph), 133.0 (d, J = 2, p-Ph), 129.9 (d, J = 11, m-Ph), 128.5 (bipy), 127.6 (d, J = 53, PPh₃ C_{ipso}), 127.5 (bipy), 125.7 (CN), 124.1 (bipy), 124.0 (bipy), 24.5 (PdCH(CN)CH₂), 21.7 (bipy Me), 21.5 (bipy Me), 15.7 (d, J = 6, PdCH(CN)CH₂), 15.0 (PdCH-(CN)CH₂CH₃). ${}^{31}P{}^{1}H{}$ NMR (CD₂Cl₂): δ 38.7 (s, PPh₃). Key ${}^{1}H{}^{-}$ ¹H COSY correlations δ/δ: 1.99 (PdCH(CN)CH₂)/1.64 (PdCH(CN)-CH₂); 1.99 (PdCH(CN)CH₂)/1.40 (PdCH(CN)CH₂); 1.64 (PdCH(CN)-CH₂)/1.40 (PdCH(CN)CH₂); 1.64 (PdCH(CN)CH₂)/0.74 (PdCH(CN)- CH_2CH_3); 1.40 (PdCH(CN)CH₂)/0.74 (PdCH(CN)CH₂CH₃). ESI-MS: $(Me_2bipy)Pd\{CH(CN)CH_2CH_3\}(PPh_3)^+ \text{ calcd. } m/z \text{ } 620.1, \text{ found } 620.0.$ IR (neat): $v_{\rm CN} = 2196 \text{ cm}^{-1}$.

 $[(Me_2bipy)Pd\{CH(CN)CH_2CH_3\}(PPh_3)][B(3,5-C_6H_3(CF_3)_2)_4] \ (5d').$ A flask was charged with (Me₂bipy)PdMeCl (**1d**, 100 mg, 0.29 mmol) and Na[B(3,5-C₆H₃(CF₃)₂)₄] (260 mg, 0.29 mmol), and CH₂Cl₂ (40 mL) was added at -78 °C by vacuum transfer. The pale yellow slurry was vigorously stirred for 5 min at 23 °C. The flask was cooled to -196 °C and AN (0.2 mL, 3.0 mmol) was added by vacuum transfer. The flask was warmed to 23 °C and the mixture was stirred for 2 d to yield a slurry of a white solid in a pale yellow supernatant. A solution of PPh₃ (75 mg, 0.29 mmol) in CH₂Cl₂ (5 mL) was added by syringe. The mixture was stirred for 6 h at 23 °C to afford a white slurry in yellow supernatant. The mixture was filtered through diatomaceous earth and the yellow filtrate was dried under vacuum to afford a yellow solid (320 mg, 74%). Anal. Calcd for C₆₆H₄₅BF₂₄N₃PPd: C, 53.41; H, 3.06; N, 2.83. Found: C, 53.57; H, 3.39; N, 2.85. The NMR data for 5d' are identical with the data for 5d with the exception of the anion resonances.43

[(**Bu**₂**bipy**)**Pd**{CH(CN)CH₂CH₃}(**PPh**₃)][**B**(C₆**F**₅)₄] (**5e**). This compound was generated in 90% yield in 1 h at 23 °C from **4e** (0.026 mmol) and PPh₃ (6.7 mg, 0.026 mmol) using the procedure for **5a**. ¹H NMR (CD₂Cl₂): δ 9.09 (br, 1H, bipy H6), 8.17 (s, 1H, bipy H3), 8.09 (s, 1H, bipy H3), 7.81 (m, 7H, o-Ph and bipy H5), 7.63 (m, 3H, p-Ph), 7.53 (m, 6H, m-Ph), 7.34 (br, 1H, bipy H6), 6.92 (br, 1H, bipy H5), 2.00 (ddd, J_{HH} = 12.4, 10.2; J_{HP} = 6.2, 1H, PdCH(CN)CH₂), 1.66 (m, 1H, PdCH(CN)CH₂), 1.48 (s, 9H, CMe₃), 1.41 (m, 1H, PdCH(CN)-CH₂), 1.30 (s, 9H, CMe₃), 0.76 (t, J = 7, 3H, PdCH(CN)CH₂CH₃). 13 C{ 14 H} NMR (CD₂Cl₂): δ 166.9 (bipy C2), 166.2 (bipy C2), 156.3 (bipy C4), 155.7 (bipy C4), 151.3 (bipy C6), 150.1 (bipy, C6), 135.1 (d, J = 11, o-Ph), 133.0 (d, J = 2, p-Ph), 129.9 (d, J = 11, m-Ph), 127.6 (d, J = 53, Ph C_{ipso}), 125.1 (bipy), 123.9 (bipy), 122.6 (*C*N),

120.3 (bipy), 120.2 (bipy), 36.1 (CMe_3), 35.9 (CMe_3), 30.2 (CMe_3), 30.0 (CMe_3), 24.6 ($PdCH(CN)CH_2$), 15.9 (d, J=6, $PdCH(CN)CH_2$), 15.0 ($PdCH(CN)CH_2CH_3$). $^{31}P\{^{1}H\}$ NMR (CD_2CI_2): δ 40.7 (s, PPh_3). Key $^{1}H^{-1}H$ COSY correlations δ/δ : 2.00 ($PdCH(CN)CH_2$)/1.66 ($PdCH(CN)CH_2$); 2.00 ($PdCH(CN)CH_2$); 1.66 ($PdCH(CN)CH_2$); 1.66 ($PdCH(CN)CH_2$)/1.41 ($PdCH(CN)CH_2$); 1.66 ($PdCH(CN)CH_2$)/0.76 ($PdCH(CN)CH_2$)/0.77 ($PdCH(CN)CH_2$)/0.78 ($PdCH(CN)CH_2$)/0.78 ($PdCH(CN)CH_2$)/0.78 ($PdCH(CN)CH_2$)/0.78 (

 $[(bim)Pd\{CH(CN)CH_2CH_3\}(PMe_3)][B(C_6F_5)_4]$ (6a). An NMR tube containing a solution of $[(bim)Pd\{CH(CN)CH_2CH_3\}]_n^{n+}(B(C_6F_5)_4^- \text{ salt},$ **4a**, 0.013 mmol) in CD_2Cl_2 (0.6 mL) was cooled to -196 °C and PMe₃ (0.014 mmol) was added by vacuum transfer. The tube was warmed to 23 °C and vigorously agitated resulting in an off-white solution. After 5 min at 23 °C, NMR spectra showed that (bim)Pd{CH(CN)-CH₂CH₃}(PMe₃)⁺ (**6a**) had formed in 90% yield. ¹H NMR (CD₂Cl₂): δ 7.50 (s, 1H, imidazole), 6.98 (s, 1H, imidazole), 6.94 (d, J = 1, 1H, imidazole), 6.86 (d, J = 1, 1H, imidazole), 4.17 (s, 2H, CH₂), 3.75 (s, 3H, NMe), 3.72 (s, 3H, NMe), 1.93 (m, 1H, PdCH(CN)CH₂), 1.53 (d, $J = 11, 9H, PMe_3$, 1.46 (m, 2H, PdCH(CN)C H_2), 1.03 (t, J = 7, 3H, PdCH(CN)CH₂CH₃). 13 C{ 1 H} NMR (CD₂Cl₂): δ 142.2 (imidazole C2), 141.7 (imidazole C2), 128.6 (imidazole C4), 126.8 (imidazole C4), 123.8 (CN), 122.8 (imidazole C5), 122.6 (d, J = 4, imidazole C5), 34.5 (NMe), 34.4 (NMe), 25.6 (PdCH(CN)CH₂), 23.2 (CH₂), 15.6 $(PdCH(CN)CH_2CH_3)$, 14.8 (d, J = 35, PMe_3), 9.0 (d, J = 6, $PdCH_3$) (CN)CH₂). ${}^{31}P{}^{1}H}$ NMR (CD₂Cl₂): δ -5.3 (s, PMe₃). Key ${}^{1}H{}^{-1}H$ COSY correlations δ/δ : 1.93 (PdCH(CN)CH₂)/1.46 (PdCH(CN)CH₂); $\{CH(CN)CH_2CH_3\}(PMe_3)^+ \text{ calcd. } m/z \text{ 426.1, found 426.0; } B(C_6F_5)_4^$ calcd. m/z 679.0, found 678.7. IR (neat): $v_{\rm CN} = 2193 \text{ cm}^{-1}$.

 $[(Tbim)Pd\{CH(CN)CH_2CH_3\}(PMe_3)][B(C_6F_5)_4]$ (6b). This species was generated in 95% yield in 5 min at 23 °C from [(Tbim)Pd{CH- $(CN)CH_2CH_3$ $\}_n^{n+}$ $(B(C_6F_5)_4^-$ salt, **4b**, 0.018 mmol) and PMe₃ (0.018 mmol) using the procedure for 6a. 6b exists as two diastereomers. The diastereomer ratio was 3/1 after 5 min and did not change after 24 h at 23 °C. NMR data for major diastereomer: ¹H NMR (CD₂Cl₂): δ 7.54 (s, 1H, imidazole), 7.03 (d, J = 8, 6H, tolyl H2), 6.86 (d, J = 1, 1H, imidazole), 6.85 (s, 1H, imidazole), 6.83 (d, J = 1, 1H, imidazole), 6.62 (d, J = 8, 6H, tolyl H3), 5.86 (s, 1H, CH), 3.27 (s, 3H, NMe), 3.16 (s, 3H, NMe), 2.33 (s, 9H, tolyl Me), 1.55 (m, 1H, PdCH(CN)-CH₂), 1.47 (m, 2H, PdCH(CN)C H_2), 1.39 (d, J = 10, 9H, PMe₃), 1.10 (t, J = 8, 3H, PdCH(CN)CH₂CH₃). ¹³C{¹H} NMR (CD₂Cl₂): δ 144.6 (imidazole C2), 144.5 (imidazole C2), 139.6 (tolyl Cipso), 138.4 (tolyl C_{ipso}), 131.9 (tolyl C3), 129.5 (d, J = 3, imidazole C), 128.9 (tolyl C2), 126.8 (imidazole C), 126.5 (CN), 123.1 (d, J = 4, imidazole C), 123.0 (imidazole C), 65.3 ((tolyl)₃C), 46.2 (CH), 35.8 (NMe), 35.3 (NMe), 25.6 (PdCH(CN)CH2), 20.9 (tolyl Me), 15.7 (PdCH(CN)- CH_2CH_3), 14.8 (d, J = 34, PMe_3), 9.1 (d, J = 8, $PdCH(CN)CH_2$). ³¹P- ${}^{1}H$ } NMR (CD₂Cl₂): δ -7.3 (s, PMe₃). Key ${}^{1}H$ - ${}^{1}H$ COSY correlations δ/δ : 1.55 (PdCH(CN)CH₂)/1.47 (PdCH(CN)CH₂); 1.47 $(PdCH(CN)CH_2)/1.10$ $(PdCH(CN)CH_2CH_3)$. Key $^1H^{-13}C$ HMQC correlations $\delta^{-1}H/\delta^{-13}C$: 1.55 (PdCH(CN))/9.1 (PdCH(CN)); 1.47 (PdCH-(CN)CH₂)/25.6 (PdCH(CN)CH₂); 1.10 (PdCH(CN)CH₂CH₃)/15.7 (PdCH-(CN)CH₂CH₃). NMR data for minor diastereomer: ¹H NMR (CD₂-Cl₂): δ 7.20 (s, 1H, imidazole), 7.08 (d, J = 8, 6H, tolyl H2), 6.89 (s, 1H, imidazole), 6.84 (s, 1H, imidazole), 6.80 (s, 1H, imidazole), 6.65 (d, J = 8, 6H, tolyl H3), 5.71 (s, 1H, CH), 3.19 (s, 3H, NMe), 3.15 (s, 3H, NMe), 3.153H, NMe), 2.33 (s, 9H, tolyl Me), 1.96 (m, 1H, PdCH(CN)CH₂), 1.64 (m, 2H, PdCH(CN)C H_2), 1.37 (d, J = 10, 9H, PMe₃), 1.15 (t, J = 8, 3H, PdCH(CN)CH₂CH₃). 13 C{ 1 H} NMR (CD₂Cl₂): δ 144.9 (imidazole C2), 144.0 (imidazole C2), 139.4 (tolyl C_{ipso}), 138.3 (tolyl C_{ipso}), 132.0 (tolyl C3), 129.1 (imidazole C), 129.0 (tolyl C2), 127.3 (CN), 127.1 (imidazole C), 123.3 (d, J = 3, imidazole C), 122.9 (imidazole C), 65.5 ((tolyl)₃C), 46.0 (CH), 36.0 (NMe), 35.0 (NMe), 25.4 (PdCH- $(CN)CH_2$, 20.9 (tolyl Me), 15.4 (PdCH(CN)CH₂CH₃), 14.8 (d, J =34, PMe₃), 9.0 (d, J = 8, PdCH(CN)CH₂). ³¹P{¹H} NMR (CD₂Cl₂): δ

-7.7 (s, PMe₃). Key 1 H $^{-1}$ H COSY correlations δ/δ : 1.96 (PdCH(CN)CH₂)/1.64 (PdCH(CN)CH₂); 1.64 (PdCH(CN)CH₂)/1.15 (PdCH(CN)CH₂CH₃). Key 1 H $^{-13}$ C HMQC correlations δ 1 H $/\delta$ 13 C: 1.96 (PdCH(CN))/9.0 (PdCH(CN)); 1.64 (PdCH(CN)CH₂)/25.4 (PdCH(CN)CH₂); 1.15 (PdCH(CN)CH₂CH₃)/15.4 (PdCH(CN)CH₂CH₃). ESI $^{-1}$ MS: (Tbim)Pd{CH(CN)CH₂CH₃}(PMe₃) $^{+}$ calcd. m/z 710.3, found 710.2; B(C₆F₅)₄ calcd. m/z 679.0, found 678.7.

 $[(CH_2py'_2)Pd\{CH(CN)CH_2CH_3\}(PMe_3)][B(C_6F_5)_4]$ (6c). This species was generated in 95% yield from [(CH2py'2)Pd{CH(CN)CH2- CH_3]_nⁿ⁺ (B(C₆F₅)₄⁻ salt, **4c**, 0.017 mmol) and PMe₃ (0.017 mmol) using the procedure for 6a. 6c exists as two isomers. The isomer ratio was 3/1 after 5 min and did not change after 24 h at 23 °C. NMR data for major isomer: ${}^{1}H$ NMR (CD₂Cl₂): δ 8.92 (s, 1H, py' H6), 8.20 (s, 1H, py' H6), 7.72 (d, J = 8, 1H, py' H4), 7.68 (d, J = 8, 1H, py' H4), 7.44 (m, 2H, py' H3), 4.82 (d, J = 14, 1H, CH₂), 4.29 (d, J = 14, 1H, CH₂), 2.40 (s, 3H, py' Me), 2.34 (s, 3H, py' Me), 1.90 (ddd, J_{HH} = 9.2, 6.6; $J_{HP} = 11.9$, 1H, PdCH(CN)CH₂), 1.53 (d, J = 11, 9H, PMe₃), 1.31 (m, 1H, PdCH(CN)CH₂), 1.19 (m, 1H, PdCH(CN)CH₂), 0.98 (t, J = 7, 3H, PdCH(CN)CH₂CH₃). ¹³C{¹H} NMR (CD₂Cl₂): δ 153.0 (py' C2), 151.5 (py' C6), 150.9 (py' C2), 149.5 (py' C6), 141.1 (py' C4), 141.1 (py' C4), 135.0 (py' C5), 134.8 (py' C5), 126.2 (CN), 125.2 (py' C3), 125.0 (d, J = 3, py' C3), 46.0 (CH₂), 25.5 (PdCH(CN)CH₂), 17.9 (py' Me), 17.6 (py' Me), 15.1 (PdCH(CN)CH₂CH₃), 14.0 (d, J =35, PMe₃), 9.4 (d, J = 7, PdCH(CN)CH₂). ³¹P{¹H} NMR (CD₂Cl₂): δ -5.4 (s, PMe₃). Key ¹H $^{-1}$ H COSY correlations δ/δ : 1.90 (PdCH(CN)-CH₂)/δ 1.31 (PdCH(CN)CH₂); 1.90 (PdCH(CN)CH₂)/1.19 (PdCH(CN)-CH₂); 1.31 (PdCH(CN)CH₂)/1.19 (PdCH(CN)CH₂); 1.31 (PdCH(CN)-CH₂)/0.98 (PdCH(CN)CH₂CH₃); 1.19 (PdCH(CN)CH₂)/0.98 (PdCH(CN)- CH_2CH_3). NMR data for minor isomer: ¹H NMR (CD_2Cl_2): δ 8.37 (s, 1H, py' H6), 8.17 (s, 1H, py' H6), 7.70 (m, 2H, py' H4), 7.45 (m, 2H, py' H3), 4.89 (d, J = 14, 1H, CH₂), 4.31 (d, J = 14, 1H, CH₂), 2.38 (s, 3H, py' Me), 2.33 (s, 3H, py' Me), 1.90 (m, 1H, PdCH(CN)CH₂), 1.53 (d, J = 11, 9H, PMe₃), 1.16 (m, 2H, PdCH(CN)CH₂), 1.01 (t, J= 7, 3H, PdCH(CN)CH₂CH₃). 13 C{ 1 H} NMR (CD₂Cl₂): δ 151.8 (py' C6), 149.6 (py' C6), 141.2 (py' C4), 141.1 (py' C4), 125.4 (py' C3), 124.8 (py' C3), 46.0 (CH₂), 24.7 (PdCH(CN)CH₂), 17.8 (py' Me), 17.5 (py' Me), 14.9 (PdCH(CN)CH₂CH₃), 13.4 (d, J = 34, PMe₃), 11.1 (PdCH(CN)CH2). The py' C2, C5, and CN resonances were not observed. $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂): δ -6.5 (s, PMe₃). ESI-MS: (CH₂ py'_{2})Pd{CH(CN)CH₂CH₃}(PMe₃)⁺ calcd. m/z 448.1, found 447.9; $B(C_6F_5)_4$ calcd. m/z 679.0, found 678.7.

 $\hbox{\tt [(bim)Pd\{CH(CN)CH_2CH_3\}(CO)][B(C_6F_5)_4]\ (7a).} \ \hbox{An NMR tube}$ containing a solution of $[(bim)Pd\{CH(CN)CH_2CH_3\}]_n^{n+}$ (B(C₆F₅)₄ salt, 4a, 0.013 mmol) in CD₂Cl₂ (0.6 mL) was cooled to −196 °C and CO (0.558 mmol, corresponding to ca. 6.7 atm at 23 $^{\circ}$ C) was added. The tube was warmed to 23 °C to yield an off-white solution. After 5 min, NMR spectra showed that (bim)Pd{CH(CN)CH₂CH₃}(CO)⁺ (7a) had formed quantitatively. 44 Separate resonances for free (δ 184.0) and coordinated CO are present in the 13C NMR spectrum at 23 °C. 1H NMR (CD₂Cl₂): δ 7.19 (d, J = 1, 1H, imidazole), 7.14 (d, J = 1, 1H, imidazole), 7.09 (d, J = 1, 1H, imidazole), 7.00 (d, J = 1, 1H, imidazole), 4.19 (d, J = 18, 1H, CH₂), 4.16 (d, J = 18, 1H, CH₂), 3.80 (s, 3H, NMe), 3.77 (s, 3H, NMe), 2.83 (m, 1H, PdCH(CN)CH₂), 1.92 (m, 2H, PdCH(CN)C H_2), 1.21 (t, J = 7, 3H, PdCH(CN)C H_2 C H_3). ¹³C-{¹H} NMR (CD₂Cl₂): δ 174.2 (PdCO), 141.4 (imidazole C2), 140.1 (imidazole C2), 128.9 (imidazole C4), 125.8 (imidazole C4), 124.2 (CN), 124.0 (imidazole C5), 123.8 (imidazole C5), 35.1 (NMe), 34.6 (NMe), 29.5 (PdCH(CN)CH₂), 23.2 (CH₂), 16.4 (PdCH(CN)CH₂), 15.5 (PdCH(CN)CH₂CH₃). Key ${}^{1}H-{}^{1}H$ COSY correlations δ/δ : 2.83 (PdCH(CN)CH₂)/1.92 (PdCH(CN)CH₂); 1.92 (PdCH(CN)CH₂)/1.21 (PdCH(CN)CH₂CH₃). Key 1 H $^{-13}$ C HMQC correlations δ 1 H/ δ 13 C: 2.83 (PdCH(CN))/16.4 (PdCH(CN)); 1.92 (PdCH(CN)CH₂)/29.5 (PdCH(CN)CH₂); 1.21 (PdCH(CN)CH₂CH₃)/15.5 (PdCH(CN)CH₂CH₃). The volatiles were removed under vacuum to yield a pale yellow solid. The solid was dried under vacuum for 10 min and dissolved in CD₂-Cl₂ (0.6 mL). NMR analysis showed that the solid was **4a**. In a separate experiment, **7a** was formed under 6.7 atm CO pressure. The CO pressure was decreased to 1 atm. NMR analysis showed that **7a** was completely converted to **4a**.

[(Tbim)Pd{CH(CN)CH₂CH₃}(CO)][B(C₆F₅)₄] (7b). This compound was generated quantitatively from [(Tbim)Pd{CH(CN)CH2- CH_3]_nⁿ⁺ (B(C₆F₅)₄⁻ salt, **4b**, 0.018 mmol) and CO (0.558 mmol, corresponding to ca. 6.7 atm at 23 °C) using the procedure for 7a. 7b exists as two diastereomers. The diastereomer ratio was 4/3 after 5 min and reached a constant value of 1/1 after 2 h at 23 °C. 7b is stable under 1 atm of CO. NMR data for diastereomer A: ¹H NMR (CD₂-Cl₂): δ 7.23 (d, J = 1, 1H, imidazole), 7.10 (d, J = 8, 6H, tolyl H2), 6.98 (d, J = 1, 1H, imidazole), 6.96 (d, J = 1, 1H, imidazole), 6.95 (d, J = 1, 1H, imidazolJ = 1, 1H, imidazole), 6.54 (d, J = 8, 6H, tolyl H3), 5.83 (s, 1H, CH), 3.30 (s, 3H, NMe), 3.13 (s, 3H, NMe), 2.41 (m, 1H, PdCH(CN)CH₂), 2.36 (s, 9H, tolyl Me), 1.67 (m, 2H, PdCH(CN)C H_2), 1.15 (t, J = 7, 3H, PdCH(CN)CH₂CH₃). 13 C{ 1 H} NMR (CD₂Cl₂): δ 173.7 (Pd-CO), 144.9 (imidazole C2), 142.5 (imidazole C2), 139.1 (tolyl C_{ipso}), 137.7 (tolyl C_{ipso}), 132.1 (tolyl C3), 129.0 (tolyl C2), 128.7 (imidazole C), 125.6 (imidazole C), 124.7 (imidazole C), 124.6 (CN), 123.9 (imidazole C), 66.6 ((tolyl)₃C), 45.7 (CH), 36.4 (NMe), 35.0 (NMe), 29.6 (PdCH-(CN)CH₂), 20.9 (tolyl Me), 15.6 (PdCH(CN)CH₂CH₃), 14.7 (PdCH-(CN)CH₂). Key ${}^{1}H-{}^{1}H$ COSY correlations δ/δ : 2.41 (PdCH(CN)CH₂)/ 1.67 (PdCH(CN)CH₂); 1.67 (PdCH(CN)CH₂)/1.15 (PdCH(CN)CH₂CH₃). Key ${}^{1}\text{H}-{}^{13}\text{C}$ HMQC correlations δ ${}^{1}\text{H}/\delta$ ${}^{13}\text{C}$: 2.41 (PdCH(CN))/14.7 (PdCH(CN)); 1.67 (PdCH(CN)CH2)/29.6 (PdCH(CN)CH2); 1.15 (PdCH-(CN)CH₂CH₃)/15.6 (PdCH(CN)CH₂CH₃). NMR data for diastereomer B: ¹H NMR (CD₂Cl₂): δ 7.12 (d, J = 8, 6H, tolyl H2), 7.01 (d, J =1, 1H, imidazole), 6.96 (d, J = 1, 1H, imidazole), 6.95 (d, J = 1, 1H, imidazole), 6.88 (d, J = 1, 1H, imidazole), 6.59 (d, J = 8, 6H, tolyl H3), 5.84 (s, 1H, CH), 3.35 (s, 3H, NMe), 3.10 (s, 3H, NMe), 2.58 (m, 1H, PdCH(CN)CH₂), 2.37 (s, 9H, tolyl Me), 1.85 (m, 2H, PdCH(CN)- CH_2), 1.23 (t, J = 7, 3H, $PdCH(CN)CH_2CH_3$). ¹³ $C\{^1H\}$ NMR (CD_2 -Cl₂): δ 173.7 (Pd-CO), 144.6 (imidazole C2), 142.4 (imidazole C2), $139.0 \; (tolyl \; C_{ipso}), \; 137.8 \; (tolyl \; C_{ipso}), \; 132.1 \; (tolyl \; C3), \; 129.1 \; (tolyl \; C2), \;$ 128.8 (imidazole C), 125.0 (imidazole C), 124.6 (imidazole C), 124.1 (CN), 123.8 (imidazole C), 66.5 ((tolyl)₃C), 45.8 (CH), 36.5 (NMe), 34.8 (NMe), 28.8 (PdCH(CN)CH₂), 20.8 (tolyl Me), 15.3 (PdCH(CN)-CH₂CH₃), 14.9 (PdCH(CN)CH₂). Key ${}^{1}H^{-1}H$ COSY correlations δ/δ : 2.58 (PdCH(CN)CH₂)/1.85 (PdCH(CN)CH₂); 1.85 (PdCH(CN)CH₂)/ 1.23 (PdCH(CN)CH₂CH₃). Key 1 H- 13 C HMQC correlations δ 1 H/ δ ¹³C: 2.58 (PdCH(CN))/14.9 (PdCH(CN)); 1.85 (PdCH(CN)CH₂)/28.8 (PdCH(CN)CH₂); 1.23 (PdCH(CN)CH₂CH₃)/15.3 (PdCH(CN)CH₂CH₃). ESI-MS: Major cation observed: [(Tbim)Pd{CH(CN)CH₂CH₃}(CO)⁺-CO] calcd. m/z 634.2, found 634.0. IR (CD₂Cl₂, under 1 atm CO): v_{CO} $= 2132 \text{ cm}^{-1}$.

[(bim)Pd{C(=O)CH(CN)CH₂CH₃}(CO)][B(C₆F₅)₄] (8a). An NMR tube containing a solution of [(bim)Pd{CH(CN)CH₂CH₃}(CO)]-[B(C₆F₅)₄] (7a, 0.013 mmol) in CD₂Cl₂ (0.6 mL) and CO (0.558 mmol, corresponding to ca. 6.7 atm at 23 °C) was maintained at 23 °C and monitored periodically by NMR. The spectra showed that 7a was slowly converted to (bim)Pd{C(=O)CH(CN)CH₂CH₃}(CO)⁺ (8a). After 2 d, the [8a]/[7a] ratio reached a constant equilibrium value of 1/3. In a similar experiment using 20 atm of CO, the equilibrium [8a]/[7a] ratio was 1/1 after 2 d. The equilibrium constant, $K_{eq} = [8a][7a]^{-1}P_{CO}^{-1} = 0.050(2)$ atm⁻¹, was determined by six experiments, with P_{CO} in the range of 4 to 20 atm. Data for (bim)Pd{C(=O)CH(CN)CH₂CH₃)}-(CO)⁺: 1 H NMR (CD₂Cl₂): δ 7.07 (d, J = 2, 1H, imidazole), 7.06 (d, J = 2, 1H, imidazole), 6.83 (d, J = 2, 1H, imidazole), 4.27 (s, 2H, CH₂), 3.78 (s, 3H, NMe), 3.76 (s, 3H,

⁽⁴⁴⁾ The imidazole ^1H NMR resonance at δ 7.19 of complex **7a** shifts slightly upfield (<0.08 ppm), and the PdCH(CN) methine ^{13}C NMR resonance at δ 16.4 shifts slightly upfield (<0.7 ppm) when excess [HNMe₂Ph][B(C₆F₅₎₄] is present. These effects are attributed to partial protonation of the cyanide group of **7a** by HNMe₂Ph⁺, which has been confirmed by control experiments in which excess HNMe₂Ph⁺ or NMe₂Ph was added. To ensure that the system is free of excess HNMe₂Ph⁺, a slight excess (10%) of (bim)-PdMe₂ (**1a**) can be used in the activation process.

NMe), 3.51 (m, 1H, Pd{C(=O)CH(CN)}), 1.91 (m, 2H, Pd{C(=O)CH(CN)CH₂}), 1.07 (t, J = 8, 3H, Pd{C(=O)CH(CN)CH₂CH₃}). 13 C-{ 1 H} NMR (CD₂Cl₂): δ 212.8 (Pd{ 2 C(=O)CH(CN)}), 172.4 (PdCO), 142.0 (imidazole C2), 140.8 (imidazole C2), 128.6 (imidazole C4), 128.1 (imidazole C4), 127.2 (imidazole C5), 123.8 (imidazole C5), 123.3 (CN), 56.4 (CH(CN)CH₂), 35.1 (NMe), 34.5 (NMe), 23.2 (CH₂), 22.9 (CH(CN)CH₂), 11.3 (CH₂CH₃). Key 1 H- 1 H COSY correlations δ/δ : 3.51 (Pd{C(=O)CH(CN)})/1.91 (Pd{C(=O)CH(CN)CH₂}); 1.91 (Pd{C(=O)CH(CN)CH₂})/1.07 (Pd{C(=O)CH(CN)CH₂CH₃}). Key 1 H- 13 C HMQC correlations δ 1 H/ δ 13 C: 3.51 (Pd{C(=O)CH(CN)})/56.4 (Pd{C(=O)CH(CN)}); 1.91 (Pd{C(=O)CH(CN)CH₂})/22.9 (Pd{C(=O)CH(CN)CH₂}); 1.07 (Pd{C(=O)CH(CN)CH₂})/11.3 (Pd{C(=O)CH(CN)CH₂})). The volatiles were removed under vacuum to yield a pale yellow solid. The solid was dried under vacuum for 10 min, dissolved in CD₂Cl₂, and identified as **4a** by NMR.

[(bim)Pd{CH(CNB(C₆F₅)₃)CH₂CH₃}(CH₂=CH₂)][B(C₆F₅)₄] (9a). Solid B(C₆F₅)₃ (8.5 mg, 0.016 mmol) was added to an NMR tube containing solid [(bim)Pd{CH(CN)CH₂CH₃}]_nⁿ⁺ (B(C₆F₅)₄⁻ salt, 4a, 0.016 mmol). The tube was evacuated and CD₂Cl₂ (0.6 mL) was added by vacuum transfer at -78 °C. The tube was cooled to -196 °C and CH₂=CH₂ (0.050 mmol) was condensed in via a gas bulb. The tube was maintained at 0 °C in the NMR probe for 20 min. ¹⁹F NMR showed that free B(C₆F₅)₃ had disappeared and ¹H NMR spectra showed that 9a had formed quantitatively. Exchange of free and coordinated ethylene is slow on the NMR time scale at -60 and 0 °C. 9a decomposes at 23 °C over several hours with formation of Pd⁰. ¹H NMR (CD₂Cl₂, -60 °C): δ 7.07 (d, J = 2, 1H, imidazole), 7.03 (s, 1H, imidazole), 6.82 (d, J = 2, 1H, imidazole), 6.71 (d, J = 2, 1H, imidazole), 5.11(br, 4H,

CH₂=CH₂), 4.19 (d, J = 17.5, 1H, CH₂), 4.16 (d, J = 17.5, 1H, CH₂), 3.76 (s, 3H, NMe), 3.73 (s, 3H, NMe), 2.30 (m, 1H, PdCH(CN)), 1.57 (m, 2H, PdCH(CN)CH₂), 1.01 (t, J = 7, 3H, PdCH(CN)CH₂CH₃). ¹³C-{¹H} NMR (CD₂Cl₂, -60 °C): δ 140.4 (imidazole C2), 139.0 (imidazole C2), 136.7(dm, J = 250, meta CNB(C_6 F₅)₃), 124.2 (imidazole C), 123.8 (imidazole C), 123.2 (imidazole C), 123.0 (imidazole C), 121.6 (CN), 94.1 (br, coordinated CH₂=CH₂), 34.8 (NMe), 34.5 (NMe), 22.6 (PdCH(CN)CH₂), 22.5 (CH₂), 14.8 (PdCH(CN)CH₂CH₃), 8.0 (PdCH(CN)). The ortho and para CNB(C_6 F₅)₃ ¹³C resonances are obscured by the B(C_6 F₅)₄ signals. ¹⁹F NMR (CD₂Cl₂, -60 °C): δ -134.9 (d, J = 17, 2F, ortho-CNB(C_6 F₅)₃), -156.9 (t, J = 22, 1F, para-CNB(C_6 F₅)₃), -167.0 (t, J = 22, 2F, meta-CNB(C_6 F₅)₃).

[(Tbim)PdMe(CH₂=CH₂)][B(C₆F₅)₄] (10b). This species was generated as described previously.¹⁷ ¹H NMR (CD₂Cl₂, -30 °C): δ 7.02 (d, J=8, 6H, tolyl H2), 6.91 (s, 1H, imidazole), 6.88 (s, 1H, imidazole), 6.84 (s, 1H, imidazole), 6.61 (s, 1H, imidazole), 6.47 (d, J=8, 6H, tolyl H3), 5.77 (s, 1H, CH), 4.34 (AA'BB', 4H, C₂H₄), 3.23 (s, 3H, NMe), 3.11 (s, 3H, NMe), 2.31 (s, 9H, tolyl Me), 0.16 (s, 3H, PdMe).

Acknowledgment. This work was supported by Bayer Polymers (Leverkusen) and the US Department of Energy (DE-FG02-00ER15036). We thank Prof. Warren Piers, Prof. Tom Ziegler, and Dr. Thomas Weiss for helpful discussions and for sharing unpublished results prior to publication.

JA044122T